Pedestal and edge electrostatic turbulence characteristics from an XGC1 gyrokinetic simulation

Understanding the multi-scale neoclassical and turbulence physics in the edge region (pedestal + scrape-off layer (SOL)) is required in order to reliably predict performance in future fusion devices. We explore turbulent characteristics in the edge region from a multi-scale neoclassical and turbulent XGC1 gyrokinetic simulation in a DIII-D like tokamak geometry, here excluding neutrals and collisions. For an H-mode type plasma with steep pedestal, it is found that the electron density fluctuations increase towards the separatrix, and stay high well into the SOL, reaching a maximum value of . Blobs are observed, born around the magnetic separatrix surface and propagate radially outward with velocities generally less than 1 km s−1. Strong poloidal motion of the blobs is also present, near 20 km s−1, consistent with E × B rotation. The electron density fluctuations show a negative skewness in the closed field-line pedestal region, consistent with the presence of 'holes', followed by a transition to strong positive skewness across the separatrix and into the SOL. These simulations indicate that not only neoclassical phenomena, but also turbulence, including the blob-generation mechanism, can remain important in the steep H-mode pedestal and SOL. Qualitative comparisons will be made to experimental observations.

[1]  E. Doyle,et al.  Comparison of turbulence measurements from DIII-D low-mode and high-performance plasmas to turbulence simulations and models , 2001 .

[2]  J. Contributors,et al.  Scaling of the tokamak near the scrape-off layer H-mode power width and implications for ITER , 2013 .

[3]  Choong-Seock Chang,et al.  X-transport: A baseline nonambipolar transport in a diverted tokamak plasma edge , 2002 .

[4]  G R Tynan,et al.  Fast Low-to-High Confinement Mode Bifurcation Dynamics in a Tokamak Edge Plasma Gyrokinetic Simulation. , 2017, Physical review letters.

[5]  A. Pigarov,et al.  Blob Transport in the Tokamak Scrape‐off‐Layer , 2004 .

[6]  B. Scott Tokamak edge turbulence: background theory and computation , 2007 .

[7]  F. Jenko,et al.  How non-adiabatic passing electron layers of linear microinstabilities affect turbulent transport , 2015 .

[8]  F. Wagner,et al.  Development of an Edge Transport Barrier at the H-Mode Transition of ASDEX , 1984 .

[9]  D. Battaglia Kinetic Neoclassical Transport in the H-mode Pedestal , 2013 .

[10]  A. Diallo,et al.  Observation of edge instability limiting the pedestal growth in tokamak plasmas. , 2014, Physical review letters.

[11]  T. Fujita,et al.  Chapter 2: Plasma confinement and transport , 2007 .

[12]  T. Osborne,et al.  Pedestal density fluctuation dynamics during the inter-ELM cycle in DIII-D a) , 2011 .

[13]  Turbulence and transport phenomena in edge and scrape-off-layer plasmas , 2011 .

[14]  D. Hatch,et al.  A gyrokinetic perspective on the JET-ILW pedestal , 2016 .

[15]  S. Zweben,et al.  Edge turbulence measurements in toroidal fusion devices , 2007 .

[16]  S. Krasheninnikov,et al.  Dynamics and generation mechanisms of mesoscale structures in tokamak edge plasmasa) , 2007 .

[17]  R. E. Bell,et al.  Edge and SOL turbulence and blob variations over a large database in NSTX , 2015 .

[18]  A. Diallo,et al.  Toward integrated multi-scale pedestal simulations including edge-localized-mode dynamics, evolution of edge-localized-mode cycles, and continuous fluctuations , 2016 .

[19]  A. Bondeson,et al.  The CHEASE code for toroidal MHD equilibria , 1996 .

[20]  M. Endler,et al.  Scaling and transport analyses based on an international edge turbulence database , 2014 .

[21]  Paolo Ricci,et al.  Plasma turbulence in the scrape-off layer of tokamak devices , 2013 .

[22]  E. Powers,et al.  Turbulent structure in the edge plasma of the TEXT tokamak , 1984 .

[23]  B. LaBombard,et al.  Universality of Intermittent Convective Transport in the Scrape‐off Layer of Magnetically Confined Devices , 2003 .

[25]  B. Rogers,et al.  Global 3D two-fluid simulations of the tokamak edge region: Turbulence, transport, profile evolution, and spontaneous E × B rotation , 2017 .

[26]  Choong-Seock Chang,et al.  Numerical study of neoclassical plasma pedestal in a tokamak geometry , 2004 .

[27]  Alcator C-Mod Team,et al.  New insights on boundary plasma turbulence and the quasi-coherent mode in Alcator C-Mod using a Mirror Langmuir Probea) , 2013 .

[28]  Brian Labombard,et al.  Edge sheared flows and the dynamics of blob-filaments , 2013 .

[29]  W. Davis,et al.  Fast 2-D camera control, data acquisition, and database techniques for edge studies on NSTX , 2014 .

[30]  T. Evans,et al.  TRANSPORT BY INTERMITTENCY IN THE BOUNDARY OF THE DIII-D TOKAMAK , 2002 .

[31]  C. Roach,et al.  Kinetic instabilities that limit β in the edge of a tokamak plasma: a picture of an H-mode pedestal. , 2011, Physical review letters.

[32]  Frank Jenko,et al.  Electron temperature gradient driven turbulence , 1999 .

[33]  D. A. D’Ippolito,et al.  Recent theoretical progress in understanding coherent structures in edge and SOL turbulence , 2008, Journal of Plasma Physics.

[34]  P. Valanju,et al.  Pedestal transport in H-mode plasmas for fusion gain , 2017 .

[35]  G. Tynan,et al.  Turbulence Nonlinearities Shed Light on Geometric Asymmetry in Tokamak Confinement Transitions. , 2017, Physical review letters.

[36]  Statistical properties of electrostatic turbulence in toroidal magnetized plasmas (Invited paper) , 2007 .

[37]  B. Scott,et al.  Direct measurement of zonal flows and geodesic acoustic mode oscillations in ASDEX Upgrade using Doppler reflectometry , 2005 .

[38]  I. Holod,et al.  Microturbulence in DIII-D tokamak pedestal. I. Electrostatic instabilities , 2014 .

[39]  James Myra,et al.  Convective transport by intermittent blob-filaments: Comparison of theory and experiment , 2011 .

[40]  R. Groebner,et al.  Global gyrokinetic simulations of the H-mode tokamak edge pedestala) , 2013 .

[41]  J. Candy,et al.  Linear gyrokinetic analysis of a DIII-D H-mode pedestal near the ideal ballooning threshold , 2012 .

[42]  L. Giannone,et al.  Measurements and modelling of electrostatic fluctuations in the scrape-off layer of ASDEX , 1995 .

[43]  J. Krommes The remarkable similarity between the scaling of kurtosis with squared skewness for TORPEX density fluctuations and sea-surface temperature fluctuations , 2008 .

[44]  K. H. Burrell,et al.  Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma , 1995 .

[45]  Robert Hager,et al.  A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma , 2016, J. Comput. Phys..

[46]  F. Jenko,et al.  Gyrokinetic study of ASDEX Upgrade inter-ELM pedestal profile evolution , 2015 .

[47]  Sergei Krasheninnikov,et al.  On scrape off layer plasma transport , 2001 .

[48]  B. Leblanc,et al.  Blob structure and motion in the edge and SOL of NSTX , 2016 .

[49]  A. Bergmann,et al.  Evidence for the neoclassical nature of the radial electric field in the edge transport barrier of ASDEX Upgrade , 2013 .

[50]  Kesheng Wu,et al.  Visualization and Analysis for Near-Real-Time Decision Making in Distributed Workflows , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW).