Nonparametric Multivariate Descriptive Measures Based on Spatial Quantiles

Abstract An appealing way of working with probability distributions, especially in nonparametric inference, is through “descriptive measures” that characterize features of particular interest. One attractive approach is to base the measures on quantiles. Here we consider the multivariate context and utilize the “spatial quantiles”, a recent vector extension of univariate quantiles that is becoming increasingly popular. In terms of these quantiles, we introduce and study nonparametric measures of multivariate location, spread, skewness and kurtosis. In particular, we define a useful “location” functional which augments the well-known “spatial” median and a “volume” functional which plotted as a “spatial scale curve” yields a convenient two-dimensional characterization of the spread of a multivariate distribution of any dimension. These spatial location and volume functionals also play roles in the formulation of “spatial” skewness and kurtosis functionals which reduce to known versions in the univariate case. We also define corresponding spatial “asymmetry” and “kurtosis” curves which are new devices even in the univariate case. Tailweight and peakedness measures, as distinct from kurtosis, are also discussed. To aid better understanding of the spatial quantiles as a foundation for nonparametric multivariate inference and analysis, we also provide some basic perspective on them: their interpretations, properties, strengths and weaknesses.

[1]  E. L. Lehmann,et al.  Descriptive Statistics for Nonparametric Models II. Location , 1975 .

[2]  Yijun Zuo,et al.  Nonparametric Notions of Multivariate “Scatter Measure” and “More Scattered” Based on Statistical Depth Functions , 2000 .

[3]  W. W. Daniel Applied Nonparametric Statistics , 1979 .

[4]  K. Pearson Contributions to the Mathematical Theory of Evolution. II. Skew Variation in Homogeneous Material , 1895 .

[5]  Cun-Hui Zhang,et al.  The multivariate L1-median and associated data depth. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  V. Koltchinskii M-estimation, convexity and quantiles , 1997 .

[7]  Morris L. Eaton,et al.  A Review of Selected Topics in Multivariate Probability Inequalities , 1982 .

[8]  V. Koltchinskii Bahadur-Kiefer Approximation for Spatial Quantiles , 1994 .

[9]  R. Serfling Approximation Theorems of Mathematical Statistics , 1980 .

[10]  Gerald S. Rogers,et al.  Mathematical Statistics: A Decision Theoretic Approach , 1967 .

[11]  Roger Koenker,et al.  L-Estimation for Linear Models , 1987 .

[12]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[13]  S. Sherman A Theorem on Convex Sets with Applications , 1955 .

[14]  Kjell A. Doksum,et al.  Measures of Location and Asymmetry , 1975 .

[15]  H. M. Finucan A Note on Kurtosis , 1964 .

[16]  Jens Breckling,et al.  A note on multivariate M-quantiles , 2001 .

[17]  H. L. MacGillivray,et al.  Skewness and Asymmetry: Measures and Orderings , 1986 .

[18]  Hannu Oja,et al.  ON THE EFFICIENCY OF MULTIVARIATE SPATIAL SIGN AND RANK TESTS , 1997 .

[19]  B. Chakraborty On Affine Equivariant Multivariate Quantiles , 2001 .

[20]  H. Oja Descriptive Statistics for Multivariate Distributions , 1983 .

[21]  R. Serfling,et al.  Generalized Quantile Processes Based on Multivariate Depth Functions, with Applications in Nonparame , 2001 .

[22]  H. L. Mac Gillivray,et al.  Shape properties of the g-and-h and johnson families , 1992 .

[23]  M. Hubert,et al.  A Comparison of Some New Measures of Skewness , 2003 .

[24]  Hannu Oja,et al.  OPERATING TRANSFORMATION RETRANSFORMATION ON SPATIAL MEDIAN AND ANGLE TEST , 1998 .

[25]  Kevin P. Balanda,et al.  Kurtosis and spread , 1990 .

[26]  I. Olkin,et al.  Peakedness in Multivariate Distributions , 1988 .

[27]  S. Claus,et al.  Zwet, w. r. van: convex transformations of random variables. mathematica centre tracts 7. mathematisch centrum amsterdam, 1964, 116 seiten , 1968 .

[28]  Jean Averous,et al.  Median Balls , 1997 .

[29]  A. V. D. Vaart,et al.  Asymptotic Statistics: U -Statistics , 1998 .

[30]  R. Strawderman Continuous Multivariate Distributions, Volume 1: Models and Applications , 2001 .

[31]  P. Rousseeuw,et al.  Breakdown Points of Affine Equivariant Estimators of Multivariate Location and Covariance Matrices , 1991 .

[32]  Ingrid Van Keilegom,et al.  Inference on Multivariate M Estimators Based on Bivariate Censored Data , 2002 .

[33]  S. Gupta,et al.  Statistical decision theory and related topics IV , 1988 .

[34]  Erich L. Lehmann,et al.  Descriptive Statistics for Nonparametric Models I. Introduction , 1975 .

[35]  Yoav Benjamini,et al.  Concepts and measures for skewness with data‐analytic implications , 1996 .

[36]  P. Bickel,et al.  DESCRIPTIVE STATISTICS FOR NONPARAMETRIC MODELS IV. SPREAD , 1979 .

[37]  John F. Hayford What is the Center of an Area, or the Center of a Population? , 1902 .

[38]  Show-Li Jan,et al.  A multivariate signed sum test for theone-sample location problem , 1994 .

[39]  Hannu Oja,et al.  Multivariate spatial sign and rank methods , 1995 .

[40]  Jana Jureckova,et al.  Contributions to Statistics: Jaroslav Hájek Memorial Volume , 1979 .

[41]  H. L. Macgillivray,et al.  THE RELATIONSHIPS BETWEEN SKEWNESS AND KURTOSIS , 1988 .

[42]  C. Radhakrishna Rao,et al.  Methodology based on the L 1 -norm, in statistical inference , 1988 .

[43]  Z. Birnbaum On Random Variables with Comparable Peakedness , 1948 .

[44]  V. Zwet Convex transformations of random variables , 1965 .

[45]  C. Craig On the Frequency Function of $xy$ , 1936 .

[46]  N. L. Johnson,et al.  Some Tests of Significance with Ordered Variables , 1956 .

[47]  Ronald H. Randles,et al.  A Multivariate Signed-Rank Test for the One-Sample Location Problem , 1990 .

[48]  Richard A. Groeneveld,et al.  A Class of Quantile Measures for Kurtosis , 1998 .

[49]  Y. Dodge on Statistical data analysis based on the L1-norm and related methods , 1987 .

[50]  Richard A. Groeneveld,et al.  Measuring Skewness and Kurtosis , 1984 .

[51]  P. Bickel,et al.  Descriptive Statistics for Nonparametric Models. III. Dispersion , 1976 .

[52]  J. Avérous,et al.  Skewness for multivariate distributions: two approaches , 1997 .

[53]  K. Balanda,et al.  Kurtosis: A Critical Review , 1988 .

[54]  Robert Serfling,et al.  Quantile functions for multivariate analysis: approaches and applications , 2002 .

[55]  W. Gilchrist,et al.  Statistical Modelling with Quantile Functions , 2000 .

[56]  K. Pearson Contributions to the Mathematical Theory of Evolution , 1894 .

[57]  Some extension of Haldane's multivariate median and its application , 1985 .

[58]  J. Moors,et al.  The Meaning of Kurtosis: Darlington Reexamined , 1986 .

[59]  P. Chaudhuri On a geometric notion of quantiles for multivariate data , 1996 .

[60]  A. V. D. Vaart Asymptotic Statistics: Delta Method , 1998 .

[61]  J. Marden,et al.  BIVARIATE QQ-PLOTS AND SPIDER WEB PLOTS , 1998 .

[62]  K. Pearson,et al.  Biometrika , 1902, The American Naturalist.

[63]  Jens Breckling,et al.  A New Definition of Multivariate M-quantiles , 2002 .

[64]  Francis Galton F.R.S. IV. Statistics by intercomparison, with remarks on the law of frequency of error , 1875 .

[65]  R. Serfling A Depth Function and a Scale Curve Based on Spatial Quantiles , 2002 .

[66]  John W. Tukey,et al.  Some Distributions of Sample Means , 1946 .

[67]  P. Chaudhuri,et al.  Sign Tests in Multidimension: Inference Based on the Geometry of the Data Cloud , 1993 .

[68]  J. Avérous,et al.  Location, skewness and tailweight in ls sense: a coherent approach , 1990 .

[69]  J. Marden,et al.  An Approach to Multivariate Rank Tests in Multivariate Analysis of Variance , 1997 .

[70]  M. Talagrand,et al.  Probability in Banach spaces , 1991 .

[71]  Regina Y. Liu,et al.  Multivariate analysis by data depth: descriptive statistics, graphics and inference, (with discussion and a rejoinder by Liu and Singh) , 1999 .

[72]  C. Small A Survey of Multidimensional Medians , 1990 .

[73]  E. Parzen Nonparametric Statistical Data Modeling , 1979 .