Porous metals in orthopedic applications – A review

The development of porous metals and coatings for osseointegration has revolutionized the specialty of orthopedics, particularly total joint reconstruction. However, until recently most implants are fabricated utilizing traditional materials (i. e. sintered beads, fiber metal, plasma spray), which have several inherent limitations. Several new highly porous metals have been recently introduced to improve upon the biomaterial properties of traditional coatings, namely porosity, surface coefficient and modulus of elasticity. These new biomaterials have a similar microscopic appearance that is much like cancellous bone. The open-cell structure of these metals affords several intriguing properties, including; high volumetric porosity (60–80%), low moduli of elasticity and high surface frictional characteristics. The self-passivating nature of these metals and complex nanostructures allow for rapid bone ingrowth in multiple applications of orthopedic surgery. The following represents a review of contemporary implants and biomaterial properties in orthopedic surgery for this class of highly porous metals. Die Entwicklung poroser Metalle und Beschichtungen fur die Osseointegration fuhrte zu einer Revolution auf dem orthopadischen Spezialgebiet der totalen Gelenksrekonstruktion. Jedoch wurden bis vor kurzem die meisten Implantate nach traditionellen Methoden (gesinterte Kugelchen, Metallfasern oder Plasmasprayverfahren) hergestellt, die im Einsatz eine Reihe von inharenten Nachteilen aufweisen. Einige neuen hochporosen Metalle wurden kurzlich eingefuhrt, die die Biomaterialeigenschaften traditioneller Schichten wie z. B. die Porositat, Oberflachenkoefficient und -modulus der Elastizitat verbessern sollen. Diese neuen Materialien haben eine ahnliche mikroskopische Struktur wie spongioser Knochen. Die offenzellige Struktur dieser Metalle bietet eine Reihe von faszinierenden Eigenschaften, wie z.B. eine hohe Volumenporositat (60–80%), niedrige Elastizitatsmoduli und hohe Reibungskennwerte. Die selbstpassivierende Natur dieser Materialien und komplexe Nanostrukturen erlauben ein schnelles Einwachsen von Knochen in vielen Anwendungen der orthopadischen Chirurgie. Die folgend Abhandlung gibt einen Uberblick uber die heutigen Implantate und Biomaterialeigenschaften der Klasse hochporoser Metalle in der orthopadischen Chirurgie.

[1]  W. Klauser,et al.  Cementless primary total hip arthroplasty with a tapered, proximally porous-coated titanium prosthesis: a 4- to 8-year retrospective review. , 2000, The Journal of arthroplasty.

[2]  K. Bachus,et al.  Postmortem analysis of consecutively retrieved asymmetric porous-coated tibial components. , 1997, The Journal of arthroplasty.

[3]  S. H. Weeden,et al.  The use of tantalum porous metal implants for Paprosky 3A and 3B defects. , 2007, The Journal of arthroplasty.

[4]  W. Harris Average 12-year outcome of a chrome-cobalt, beaded, bony ingrowth acetabular component. , 1998, Journal of Arthroplasty.

[5]  J. Galante,et al.  The progression of patellofemoral arthrosis after medial unicompartmental replacement: results at 11 to 15 years. , 2006, Clinical orthopaedics and related research.

[6]  R M Pilliar,et al.  The effect of movement on the bonding of porous metal to bone. , 1973, Journal of biomedical materials research.

[7]  D. Robertson,et al.  Biomechanical and clinical evaluations of a porous tantalum implant for the treatment of early-stage osteonecrosis. , 2005, The Journal of bone and joint surgery. American volume.

[8]  J. Galante,et al.  A comparative study of porous coatings in a weight-bearing total hip-arthroplasty model. , 1986, The Journal of bone and joint surgery. American volume.

[9]  D. Kaplan,et al.  Porosity of 3D biomaterial scaffolds and osteogenesis. , 2005, Biomaterials.

[10]  Y. Kim,et al.  Uncemented porous-coated anatomic total hip replacement. Results at six years in a consecutive series. , 1993, The Journal of bone and joint surgery. British volume.

[11]  Joshua J Jacobs,et al.  Experimental and clinical performance of porous tantalum in orthopedic surgery. , 2006, Biomaterials.

[12]  P. Griss,et al.  Implant fixation by bone ingrowth. , 1999, The Journal of arthroplasty.

[13]  J. Robertson,et al.  Clinical experience with porous tantalum cervical interbody implants in a prospective randomized controlled trial , 2003, British journal of neurosurgery.

[14]  A. Hofmann,et al.  Ten- to 14-Year Clinical Followup of the Cementless Natural Knee System , 2001, Clinical orthopaedics and related research.

[15]  A. Hanssen,et al.  Use of porous tantalum metaphyseal cones for severe tibial bone loss during revision total knee replacement. , 2008, The Journal of bone and joint surgery. American volume.

[16]  Michael Tanzer,et al.  Fibrous tissue ingrowth and attachment to porous tantalum. , 2000, Journal of biomedical materials research.

[17]  L D Zardiackas,et al.  Structure, metallurgy, and mechanical properties of a porous tantalum foam. , 2001, Journal of biomedical materials research.

[18]  G. Arden,et al.  A comparison of the stability of proplast-coated and cemented Thompson prostheses in the treatment of subcapital femoral fractures. , 1977, Injury.

[19]  W H Harris,et al.  The effect of improved cementing techniques on component loosening in total hip replacement. An 11-year radiographic review. , 1990, The Journal of bone and joint surgery. British volume.

[20]  H. Skinner,et al.  Attachment of prostheses to the musculoskeletal system by tissue ingrowth and mechanical interlocking. , 1973, Journal of biomedical materials research.

[21]  R. Bloebaum,et al.  Bilateral tibial components of different cementless designs and materials. Microradiographic, backscattered imaging, and histologic analysis. , 1991, Clinical orthopaedics and related research.

[22]  A. Lombardi,et al.  Evolution of tibial fixation in total knee arthroplasty. , 2007, The Journal of arthroplasty.

[23]  L. Dorr,et al.  Cementless Hemispheric Porous-Coated Sockets Implanted with Press-Fit Technique without Screws: Average Ten-Year Follow-up , 2002, The Journal of bone and joint surgery. American volume.

[24]  L. Smith CERAMIC-PLASTIC MATERIAL AS A BONE SUBSTITUTE. , 1963, Archives of surgery.

[25]  Hai-sheng Li,et al.  Pedicle Screw Fixation Enhances Anterior Lumbar Interbody Fusion With Porous Tantalum Cages: An Experimental Study in Pigs , 2005, Spine.

[26]  I Macnab,et al.  The rate of bone ingrowth into porous metal. , 1976, Journal of biomedical materials research.

[27]  Hai-sheng Li,et al.  Bone ingrowth characteristics of porous tantalum and carbon fiber interbody devices: an experimental study in pigs. , 2004, The spine journal : official journal of the North American Spine Society.

[28]  R. Pilliar,et al.  Surgical implants. The role of surface porosity in fixation to bone and acrylic. , 1971, The Journal of bone and joint surgery. American volume.

[29]  I Macnab,et al.  Porous surface layered prosthetic devices. , 1975, Biomedical engineering.

[30]  R. Barrack,et al.  Quantitative analysis of tissue growth into human porous total hip components. , 1988, The Journal of arthroplasty.

[31]  M. Rooks,et al.  Porous tantalum implant in early osteonecrosis of the hip: preliminary report on operative, survival, and outcomes results. , 2007, The Journal of arthroplasty.

[32]  I. Pinder,et al.  Results of uncemented porous-coated anatomic total hip replacement. , 1994, The Journal of bone and joint surgery. British volume.

[33]  A. Port,et al.  Early Results of a New Highly Porous Modular Acetabular Cup in Revision Arthroplasty , 2009, Hip international : the journal of clinical and experimental research on hip pathology and therapy.