Recent evolution of 129I levels in the Nordic Seas and the North Atlantic Ocean.

[1]  H. Synal,et al.  Anthropogenic 236U and 129I in the Mediterranean Sea: First comprehensive distribution and constrain of their sources. , 2017, The Science of the total environment.

[2]  Byung-Il Min,et al.  The behaviour of 137Cs in the North Atlantic Ocean assessed from numerical modelling: Releases from nuclear fuel reprocessing factories, redissolution from contaminated sediments and leakage from dumped nuclear wastes. , 2016, Marine pollution bulletin.

[3]  D. Quadfasel,et al.  Water mass transformation in the deep basins of the Nordic Seas: Analyses of heat and freshwater budgets , 2016 .

[4]  H. Synal,et al.  First 236U data from the Arctic Ocean and use of 236U/238U and 129I/236U as a new dual tracer , 2016 .

[5]  H. Synal,et al.  Concentrations of iodine isotopes ((129)I and (127)I) and their isotopic ratios in aerosol samples from Northern Germany. , 2016, Journal of environmental radioactivity.

[6]  H. Synal,et al.  Reconstruction of the 236U input function for the Northeast Atlantic Ocean: Implications for 129I/236U and 236U/238U‐based tracer ages , 2015 .

[7]  R. Periáñez,et al.  The behaviour of ¹²⁹I released from nuclear fuel reprocessing factories in the North Atlantic Ocean and transport to the Arctic assessed from numerical modelling. , 2015, Marine pollution bulletin.

[8]  Weijian Zhou,et al.  Progress on 129I analysis and its application in environmental and geological researches , 2013 .

[9]  Frank Kauker,et al.  Recent changes in Arctic Ocean circulation revealed by iodine‐129 observations and modeling , 2012 .

[10]  H. Synal,et al.  Iodine-129 and iodine-127 in European seawaters and in precipitation from Northern Germany. , 2012, The Science of the total environment.

[11]  C. Mertens,et al.  Deep water formation, the subpolar gyre, and the meridional overturning circulation in the subpolar North Atlantic , 2011 .

[12]  S. B. Moran,et al.  Iodine-129, 137Cs, and CFC-11 tracer transit time distributions in the Arctic Ocean , 2011 .

[13]  P. Povinec,et al.  Certified reference material IAEA-418: 129I in Mediterranean Sea water , 2010 .

[14]  M. Bentsen,et al.  Simulating transport of 129I and idealized tracers in the northern North Atlantic Ocean , 2010 .

[15]  R. Huang Ocean Circulation: Wind-Driven and Thermohaline Processes , 2009 .

[16]  J. Swift,et al.  Sources to the East Greenland Current and its contribution to the Denmark Strait Overflow , 2008 .

[17]  I. Harms,et al.  High resolution modelling of the North Icelandic Irminger Current (NIIC) , 2006 .

[18]  V. Truesdale,et al.  The distribution of dissolved inorganic iodine in the seas around Iceland , 2006 .

[19]  A. Aldahan,et al.  Anthropogenic iodine-129 in the Arctic Ocean and Nordic Seas: numerical modeling and prognoses. , 2006, Marine pollution bulletin.

[20]  N. P. Holliday,et al.  Large-scale physical controls on phytoplankton growth in the Irminger Sea Part I: Hydrographic zones, mixing and stratification , 2006 .

[21]  T. Tanhua,et al.  Formation of Denmark Strait overflow water and its hydro-chemical composition , 2005 .

[22]  S. B. Moran,et al.  Iodine 129/CFC 11 transit times for Denmark Strait Overflow Water in the Labrador and Irminger Seas , 2005 .

[23]  A. Aldahan,et al.  Anthropogenic iodine-129 in seawater along a transect from the Norwegian coastal current to the North Pole. , 2004, Marine pollution bulletin.

[24]  A. Aldahan,et al.  Tracing water masses with 129I in the western Nordic Seas in early spring 2002 , 2004 .

[25]  A. Aldahan,et al.  Concentrations of 129I along a transect from the North Atlantic to the Baltic Sea , 2004 .

[26]  M. Suter,et al.  Relative influence of 129I sources in a sediment core from the Kattegat area. , 2004, The Science of the total environment.

[27]  Suter,et al.  Accelerator mass spectrometry as a powerful tool for the determination of 129I in rainwater , 2000, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[28]  R. Fine,et al.  Tracing the flow of North Atlantic Deep Water using chlorofluorocarbons , 2000 .

[29]  S. Østerhus,et al.  North Atlantic–Nordic Seas exchanges , 2000 .

[30]  A. Aldahan,et al.  Distribution and inventory of 129I in the central Arctic Ocean , 1999 .

[31]  S. Bacon Decadal variability in the outflow from the Nordic seas to the deep Atlantic Ocean , 1998, Nature.

[32]  H. Edmonds,et al.  129I in archived seawater samples , 1998 .

[33]  R. Dickson,et al.  The production of North Atlantic Deep Water: Sources, rates, and pathways , 1994 .

[34]  D. Elmore,et al.  Applications of 129I and 36Cl in hydrology , 1987 .

[35]  David Elmore,et al.  Determination of natural and anthropogenic 129I in marine sediments , 1986 .

[36]  A. Aldahan,et al.  A summary of global 129I in marine waters , 2013 .

[37]  A. Aldahan,et al.  Water masses and 129I distribution in the Nordic Seas , 2013 .

[38]  J. M. López-Gutiérrez,et al.  129I measurements on the 1MV AMS facility at the Centro Nacional de Aceleradores (CNA, Spain). , 2012, Applied radiation and isotopes : including data, instrumentation and methods for use in agriculture, industry and medicine.

[39]  M. García-León,et al.  AMS measurements of 129I in seawater around Iceland and the Irminger Sea , 2011 .

[40]  C. Jeandel,et al.  Denmark Strait water circulation traced by heterogeneity in neodymium isotopic compositions , 2004 .

[41]  S. Østerhus,et al.  Greenland-Scotland overflow studied by hydro-chemical multivariate analysis , 2003 .

[42]  L. Kilius,et al.  129I and 137Cs tracer measurements in the Arctic Ocean , 1998 .

[43]  George L. Pickard,et al.  Descriptive Physical Oceanography: An Introduction , 1963 .