Neuroglia: the 150 years after

One hundred and fifty years ago on 3 April 1858, at 37 years of age, Rudolf Virchow (Box 1) promulgated the concept of neuroglia in a lecture delivered at the New Pathology Institute of Berlin University. This lecture was part of a series of 20 lectures for colleagues and medical practitioners, and the 13th was entitled ‘Spinal cord and the brain’. In that lecture, Virchow made public his earlier thoughts [1] on the brain connective tissue, the ‘nervenkitt’ or nerve-cement, which he termed ‘neuroglia’; he had coined the term already in 1856 in a comment to an earlier article from 1846 when his collected works were republished.

[1]  A. Verkhratsky,et al.  Glial calcium: homeostasis and signaling function. , 1998, Physiological reviews.

[2]  J. Meldolesi,et al.  Astrocytes, from brain glue to communication elements: the revolution continues , 2005, Nature Reviews Neuroscience.

[3]  M. Schultze,et al.  Untersuchungen über Gehirn und Rückenmark des Menschen und der Säugethiere , 1865 .

[4]  Takahiro Takano,et al.  Loss of Astrocytic Domain Organization in the Epileptic Brain , 2008, The Journal of Neuroscience.

[5]  Andriezen Wl,et al.  The Neuroglia Elements in the Human Brain , 1893 .

[6]  Mark Ellisman,et al.  Protoplasmic Astrocytes in CA1 Stratum Radiatum Occupy Separate Anatomical Domains , 2002, The Journal of Neuroscience.

[7]  T. Takano,et al.  Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo , 2006, Nature Neuroscience.

[8]  Christian Giaume,et al.  Control of gap-junctional communication in astrocytic networks , 1996, Trends in Neurosciences.

[9]  C. Schleich Schmerzlose Operationen: Örtliche Betäubung mit indifferenten Flüssigkeiten. Psychophysik des natürlichen und künstlichen Schlafes , 1906 .

[10]  D. Bergles,et al.  Synaptic communication between neurons and NG2+ cells , 2006, Current Opinion in Neurobiology.

[11]  B. B. Geren,et al.  The formation from the Schwann cell surface of myelin in the peripheral nerves of chick embryos. , 1954, Experimental cell research.

[12]  F. Kirchhoff,et al.  Astroglial processes show spontaneous motility at active synaptic terminals in situ , 2004, The European journal of neuroscience.

[13]  B. MacVicar,et al.  Calcium transients in astrocyte endfeet cause cerebrovascular constrictions , 2004, Nature.

[14]  D. Attwell,et al.  Glutamatergic signaling in the brain's white matter , 2009, Neuroscience.

[15]  C. Giaume,et al.  Glucose metabolism and proliferation in glia: role of astrocytic gap junctions , 2006, Journal of neurochemistry.

[16]  F. Kirchhoff,et al.  Glia: the fulcrum of brain diseases , 2007, Cell Death and Differentiation.

[17]  W. Penfield Cytology & cellular pathology of the nervous system , 1965 .

[18]  A. Verkhratsky Calcium ions and integration in neural circuits , 2006, Acta physiologica.

[19]  A. Nishiyama Polydendrocytes: NG2 Cells with Many Roles in Development and Repair of the CNS , 2007, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[20]  Helmut Kettenmann,et al.  Calcium signalling in glial cells , 1996, Trends in Neurosciences.

[21]  H. Kettenmann,et al.  Microglia: active sensor and versatile effector cells in the normal and pathologic brain , 2007, Nature Neuroscience.

[22]  R. Virchow,et al.  Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre , 1861 .

[23]  S. Finkbeiner,et al.  Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. , 1990, Science.

[24]  K. H. Backus,et al.  Aspartate, glutamate and γ-aminobutyric acid depolarize cultured astrocytes , 1984, Neuroscience Letters.

[25]  C. Steinhäuser,et al.  Ion channels in glial cells , 2000, Brain Research Reviews.

[26]  H. Neumann,et al.  Neuronal ‘On’ and ‘Off’ signals control microglia , 2007, Trends in Neurosciences.

[27]  H. Muller Zur Histologie der Netzhaut , 1851 .

[28]  Anastassios V. Tzingounis,et al.  Glutamate transporters: confining runaway excitation by shaping synaptic transmission , 2007, Nature Reviews Neuroscience.

[29]  S. Goldman,et al.  Astrocytic complexity distinguishes the human brain , 2006, Trends in Neurosciences.

[30]  A. Araque,et al.  Tripartite synapses: glia, the unacknowledged partner , 1999, Trends in Neurosciences.

[31]  N. Hamilton,et al.  Synantocytes: the fifth element , 2005, Journal of anatomy.

[32]  M. Götz,et al.  Radial glial cell heterogeneity—The source of diverse progeny in the CNS , 2007, Progress in Neurobiology.

[33]  M. Nedergaard,et al.  Connexin 43 Hemichannels Are Permeable to ATP , 2008, The Journal of Neuroscience.

[34]  M. Bundgaard,et al.  All vertebrates started out with a glial blood‐brain barrier 4–500 million years ago , 2008, Glia.

[35]  C. Weigert,et al.  Beiträge zur Kenntnis der normalen menschlichen Neuroglia , 1896 .

[36]  S. Cajal,et al.  Histology of the Nervous System , 1911 .

[37]  R. North,et al.  Vesicular release of ATP at central synapses , 2006, Pflügers Archiv.

[38]  S. Goldman,et al.  New roles for astrocytes: Redefining the functional architecture of the brain , 2003, Trends in Neurosciences.

[39]  M. C. Angulo,et al.  Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation , 2003, Nature Neuroscience.

[40]  P. Hof,et al.  Evolution of increased glia–neuron ratios in the human frontal cortex , 2006, Proceedings of the National Academy of Sciences.

[41]  A. Alzheimer,et al.  Histologische und histopathologische Arbeiten über die Grosshirnrinde : mit besonderer Berücksichtigung der pathologischen Anatomie der Geisteskrankheiten , 1904 .

[42]  W L Andriezen,et al.  The Neuroglia Elements in the Human Brain , 1893, British medical journal.

[43]  M. Lenhossék Der feinere Bau des Nervensystems im Lichte neuester Forschungen , 1893 .

[44]  B. B. Geren The formation from the schwann cell surfaceof myelin in the peripheral nerves of chick embryos , 1954 .

[45]  F. Helmchen,et al.  Resting Microglial Cells Are Highly Dynamic Surveillants of Brain Parenchyma in Vivo , 2005, Science.