Transportation mode classification from smartphone sensors via a long-short-term-memory network

This article introduce the architecture of a Long-Short-Term-Memory network for classifying transportation-modes via smartphone data and evaluates its accuracy. By using a Long-Short-Term-Memory with common preprocessing steps such as normalisation for classification tasks an F1-Score accuracy of 63.68 % was achieved with an internal test dataset. We participated as team "GanbareAMT" in the "SHL recognition challenge".