Rational macromolecular design and strategies to tune the microporosity for high-performance O2/N2 separation membranes

[1]  Shuangjiang Luo,et al.  Enhancement of molecular sieving and plasticization resistance of polybenzimidazole membranes through chemical crosslinking for helium recovery from multi-component natural gas , 2023, Separation and Purification Technology.

[2]  Ying Sun,et al.  Direct Thermal Oxidative Cross-Linking in Air toward Hierarchically Microporous Polymer Membranes for Advanced Molecular Sieving , 2023, Industrial & Engineering Chemistry Research.

[3]  Ying Sun,et al.  Interfacially polymerized nanofilms with triptycene moieties and enhanced micropore interconnectivity for highly permselective gas separations , 2023, Chemical Engineering Journal.

[4]  R. Chacartegui,et al.  Large-scale oxygen-enriched air (OEA) production from polymeric membranes for partial oxycombustion processes , 2023, Energy.

[5]  Shuangjiang Luo,et al.  Coordination enhancement of hydrogen and helium recovery in polybenzimidazole-based carbon molecular sieve membranes , 2023, Separation and Purification Technology.

[6]  Ying Sun,et al.  Highly (222)-Oriented Flexible Hollow Fiber-Supported Metal-Organic Framework Membranes for Ultra-Permeable and Selective H2/CO2 Separation , 2023, Chemical Engineering Journal.

[7]  Lu Liu,et al.  Ionic Microporous Polymer Membranes for Advanced Gas Separations , 2023, Industrial & Engineering Chemistry Research.

[8]  Xiaohua Ma,et al.  Ionization of Tröger's base polymer of intrinsic microporosity for high-performance membrane-mediated helium recovery , 2023, Journal of Membrane Science.

[9]  Lei Wu,et al.  Carbon molecular sieve gas separation membranes from crosslinkable bromomethylated 6FDA-DAM polyimide , 2022, Journal of Membrane Science.

[10]  Lin Li,et al.  Influence of NIPS on the structure and gas separation performance of asymmetric carbon molecular sieve membranes , 2022, Journal of Materials Science.

[11]  Xinbo Wang,et al.  Recent advances in developing mixed matrix membranes based on covalent organic frameworks , 2022, Separation and Purification Technology.

[12]  Hao-jie Li,et al.  A review of polymer-derived carbon molecular sieve membranes for gas separation , 2022, New Carbon Materials.

[13]  Xiaohua Ma,et al.  Finely tuning the microporosity in dual thermally crosslinked polyimide membranes for plasticization resistance gas separations , 2022, Journal of Membrane Science.

[14]  I. Pinnau,et al.  Catalytic arene-norbornene annulation (CANAL) ladder polymer derived carbon membranes with unparalleled hydrogen/carbon dioxide size-sieving capability , 2022, Journal of Membrane Science.

[15]  Jun Myun Ahn,et al.  Hydrocarbon ladder polymers with ultrahigh permselectivity for membrane gas separations , 2022, Science.

[16]  Can Wang,et al.  Ladder polymers of intrinsic microporosity from superacid-catalyzed Friedel-Crafts polymerization for membrane gas separation , 2022, Journal of Membrane Science.

[17]  M. Micari,et al.  Oxygen enrichment of air: Performance guidelines for membranes based on techno-economic assessment , 2022, Journal of Membrane Science.

[18]  Yanfang Fan,et al.  Polyimide/ZIFs mixed matrix membranes with tunable interfacial interaction for efficient gas separation , 2022, Journal of Membrane Science.

[19]  Nanwen Li,et al.  Ultra-selective molecular-sieving gas separation membranes enabled by multi-covalent-crosslinking of microporous polymer blends , 2021, Nature Communications.

[20]  M. Al-Marzouqi,et al.  Current and future trends in polymer membrane-based gas separation technology: A comprehensive review , 2021 .

[21]  Hongjian Wang,et al.  Organic molecular sieve membranes for chemical separations. , 2021, Chemical Society reviews.

[22]  Song Xue,et al.  Structure evolution in carbon molecular sieve membranes derived from binaphthol-6FDA polyimide and their gas separation performance , 2020 .

[23]  Weishen Yang,et al.  Modification strategies for metal-organic frameworks targeting at membrane-based gas separations , 2020 .

[24]  Yanwei Sun,et al.  Design of metal-organic framework membranes towards ultimate gas separation , 2020, Green Chemical Engineering.

[25]  Jixiao Wang,et al.  Polybenzimidazole (PBI) and benzimidazole-linked polymer (BILP) membranes , 2020 .

[26]  N. McKeown Polymers of Intrinsic Microporosity (PIMs) , 2020 .

[27]  I. Pinnau,et al.  Facile Synthesis and Study of Microporous Catalytic Arene-Norbornene Annulation-Tröger's Base Ladder Polymers for Membrane Air Separation. , 2020, ACS macro letters.

[28]  Xiaohua Ma,et al.  Enhanced Gas Separation Properties of Tröger’s Base Polymer Membranes Derived from Pure Triptycene Diamine Regioisomers , 2020, Macromolecules.

[29]  Álvaro A. Ramírez-Santos,et al.  Polymeric membrane materials for nitrogen production from air: A process synthesis study , 2019, Chemical Engineering Science.

[30]  M. Ferrari,et al.  Redefining the Robeson upper bounds for CO2/CH4 and CO2/N2 separations using a series of ultrapermeable benzotriptycene-based polymers of intrinsic microporosity , 2019, Energy & Environmental Science.

[31]  Yan Xia,et al.  Tuning the Molecular Weights, Chain Packing, and Gas-Transport Properties of CANAL Ladder Polymers by Short Alkyl Substitutions , 2019, Macromolecules.

[32]  I. Pinnau,et al.  Ultra-selective carbon molecular sieve membranes for natural gas separations based on a carbon-rich intrinsically microporous polyimide precursor , 2019, Journal of Membrane Science.

[33]  L. Tayo,et al.  The gas separation performance adjustment of carbon molecular sieve membrane depending on the chain rigidity and free volume characteristic of the polymeric precursor , 2019, Carbon.

[34]  Chen Zhang,et al.  New insights into structural evolution in carbon molecular sieve membranes during pyrolysis , 2019, Carbon.

[35]  I. Pinnau,et al.  Polymers of intrinsic microporosity for energy-intensive membrane-based gas separations , 2018, Materials Today Nano.

[36]  C. Doherty,et al.  Highly Selective and Permeable Microporous Polymer Membranes for Hydrogen Purification and CO2 Removal from Natural Gas , 2018, Chemistry of Materials.

[37]  Ying Zheng,et al.  Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes , 2018, Fuel.

[38]  M. Ferrari,et al.  The synthesis, chain-packing simulation and long-term gas permeability of highly selective spirobifluorene-based polymers of intrinsic microporosity , 2018 .

[39]  Neil B. McKeown,et al.  Gas Permeation Properties, Physical Aging, and Its Mitigation in High Free Volume Glassy Polymers. , 2018, Chemical reviews.

[40]  J. Petropoulos Mechanisms and Theories For Sorption and Diffusion of Gases in Polymers , 2018 .

[41]  J. C. Jansen,et al.  A highly rigid and gas selective methanopentacene-based polymer of intrinsic microporosity derived from Tröger's base polymerization , 2018 .

[42]  Tyler E. Curtis,et al.  Triptycene-containing poly(benzoxazole-co-imide) membranes with enhanced mechanical strength for high-performance gas separation , 2018 .

[43]  Jian Jin,et al.  Carbon Molecular Sieve Membranes Derived from Tröger's Base-Based Microporous Polyimide for Gas Separation. , 2018, ChemSusChem.

[44]  I. Pinnau,et al.  Effect of Film Thickness and Physical Aging on “Intrinsic” Gas Permeation Properties of Microporous Ethanoanthracene-Based Polyimides , 2018 .

[45]  Yan Xia,et al.  Functionalized Rigid Ladder Polymers from Catalytic Arene-Norbornene Annulation Polymerization. , 2017, ACS macro letters.

[46]  Yan Xia,et al.  Synthesis of Ladder Polymers: Developments, Challenges, and Opportunities. , 2017, Chemistry.

[47]  T. Merkel,et al.  50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities , 2017 .

[48]  Michael S. Wendland Highly microporous free-radically generated polymeric materials using a novel contorted monomer , 2017 .

[49]  M. Ferrari,et al.  Polymer ultrapermeability from the inefficient packing of 2D chains. , 2017, Nature materials.

[50]  Yan Xia,et al.  Norbornyl benzocyclobutene ladder polymers: Conformation and microporosity , 2017 .

[51]  Chen Zhang,et al.  Carbon molecular sieve structure development and membrane performance relationships , 2017 .

[52]  I. Pinnau,et al.  New phenazine-containing ladder polymer of intrinsic microporosity from a spirobisindane-based AB-type monomer , 2016 .

[53]  J. C. Jansen,et al.  Enhancing the Gas Permeability of Tröger’s Base Derived Polyimides of Intrinsic Microporosity , 2016 .

[54]  C. Doherty,et al.  Finely Tuning the Free Volume Architecture in Iptycene-Containing Polyimides for Highly Selective and Fast Hydrogen Transport , 2016 .

[55]  I. Pinnau,et al.  Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1) , 2016 .

[56]  Won Hee Lee,et al.  High-strength, soluble polyimide membranes incorporating Tröger’s Base for gas separation , 2016 .

[57]  I. Pinnau,et al.  Physical Aging, Plasticization and Their Effects on Gas Permeation in "Rigid" Polymers of Intrinsic Microporosity , 2015 .

[58]  I. Pinnau,et al.  Fine-Tuned Intrinsically Ultramicroporous Polymers Redefine the Permeability/Selectivity Upper Bounds of Membrane-Based Air and Hydrogen Separations. , 2015, ACS macro letters.

[59]  M. Ferrari,et al.  Highly Permeable Benzotriptycene-Based Polymer of Intrinsic Microporosity. , 2015, ACS macro letters.

[60]  B. Freeman,et al.  Pentiptycene-based polyimides with hierarchically controlled molecular cavity architecture for efficient membrane gas separation , 2015 .

[61]  Y. Lee,et al.  Rigid and microporous polymers for gas separation membranes , 2015 .

[62]  I. Pinnau,et al.  Synthesis and Effect of Physical Aging on Gas Transport Properties of a Microporous Polyimide Derived from a Novel Spirobifluorene-Based Dianhydride. , 2015, ACS macro letters.

[63]  Yu Seong Do,et al.  Gas sorption and transport in thermally rearranged polybenzoxazole membranes derived from polyhydroxylamides , 2015 .

[64]  I. Pinnau,et al.  Pristine and thermally-rearranged gas separation membranes from novel o-hydroxyl-functionalized spirobifluorene-based polyimides , 2014 .

[65]  J. C. Jansen,et al.  Molecular Modeling and Gas Permeation Properties of a Polymer of Intrinsic Microporosity Composed of Ethanoanthracene and Tröger’s Base Units , 2014 .

[66]  Dong Wang,et al.  Microporous Polyimides with Rationally Designed Chain Structure Achieving High Performance for Gas Separation , 2014 .

[67]  I. Pinnau,et al.  Energy‐Efficient Hydrogen Separation by AB‐Type Ladder‐Polymer Molecular Sieves , 2014, Advanced materials.

[68]  J. Asua,et al.  High performance pressure sensitive adhesives by miniemulsion photopolymerization in a continuous tubular reactor , 2014 .

[69]  A. Cheetham,et al.  Controlled thermal oxidative crosslinking of polymers of intrinsic microporosity towards tunable molecular sieve membranes , 2014, Nature Communications.

[70]  I. Pinnau,et al.  Rational Design of Intrinsically Ultramicroporous Polyimides Containing Bridgehead-Substituted Triptycene for Highly Selective and Permeable Gas Separation Membranes , 2014 .

[71]  I. Pinnau,et al.  Ultra‐Microporous Triptycene‐based Polyimide Membranes for High‐Performance Gas Separation , 2014, Advanced materials.

[72]  Yu Seong Do,et al.  Intrinsically Microporous Soluble Polyimides Incorporating Tröger’s Base for Membrane Gas Separation , 2014 .

[73]  Hayato Hagi,et al.  Energy Efficiency of Oxygen Enriched Air Production Technologies: Cryogeny vs Membranes , 2014 .

[74]  Gabriele Clarizia,et al.  Triptycene Induced Enhancement of Membrane Gas Selectivity for Microporous Tröger's Base Polymers , 2014, Advanced materials.

[75]  J. C. Jansen,et al.  A highly permeable polyimide with enhanced selectivity for membrane gas separations , 2014 .

[76]  I. Pinnau,et al.  Novel Spirobifluorene- and Dibromospirobifluorene-Based Polyimides of Intrinsic Microporosity for Gas Separation Applications , 2013 .

[77]  I. Pinnau,et al.  Carbon molecular sieve gas separation membranes based on an intrinsically microporous polyimide precursor , 2013 .

[78]  Á. Alegría,et al.  Physical aging in polymers and polymer nanocomposites: recent results and open questions , 2013 .

[79]  B. Freeman,et al.  Energy-efficient polymeric gas separation membranes for a sustainable future: A review , 2013 .

[80]  J. C. Jansen,et al.  Synthesis and gas permeation properties of novel spirobisindane-based polyimides of intrinsic microporosity , 2013 .

[81]  Chuyang Y. Tang,et al.  Membrane module design and dynamic shear-induced techniques to enhance liquid separation by hollow fiber modules: a review , 2013 .

[82]  P. Budd,et al.  Mechanically robust thermally rearranged (TR) polymer membranes with spirobisindane for gas separation , 2013 .

[83]  J. C. Jansen,et al.  An Efficient Polymer Molecular Sieve for Membrane Gas Separations , 2013, Science.

[84]  J. C. Jansen,et al.  A Spirobifluorene‐Based Polymer of Intrinsic Microporosity with Improved Performance for Gas Separation , 2012, Advanced materials.

[85]  S. Kawi,et al.  High-Performance Thermally Self-Cross-Linked Polymer of Intrinsic Microporosity (PIM-1) Membranes for Energy Development , 2012 .

[86]  B. Freeman,et al.  Physical aging of ultrathin glassy polymer films tracked by gas permeability , 2009 .

[87]  B. Freeman,et al.  Synthesis and Properties of Indan-Based Polyacetylenes That Feature the Highest Gas Permeability among All the Existing Polymers , 2008 .

[88]  P. Budd,et al.  High‐Performance Membranes from Polyimides with Intrinsic Microporosity , 2008, Advanced materials.

[89]  L. Robeson,et al.  The upper bound revisited , 2008 .

[90]  Anita J. Hill,et al.  Crosslinking poly[1-(trimethylsilyl)-1-propyne] and its effect on physical stability , 2008 .

[91]  Yanming Hu,et al.  Synthesis and extremely high gas permeability of polyacetylenes containing polymethylated indan/tetrahydronaphthalene moieties. , 2007, Chemical communications.

[92]  Young Moo Lee,et al.  Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions , 2007, Science.

[93]  W. Koros,et al.  An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials , 2005 .

[94]  Neil B. McKeown,et al.  Gas separation membranes from polymers of intrinsic microporosity , 2005 .

[95]  Neil B. McKeown,et al.  Solution‐Processed, Organophilic Membrane Derived from a Polymer of Intrinsic Microporosity , 2004 .

[96]  Saad Makhseed,et al.  Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials. , 2004, Chemical communications.

[97]  Malcolm B. Polk,et al.  Rigid-Rod Polymers: Synthesis, Processing, Simulation, Structure, and Properties , 2003 .

[98]  A. Ismail,et al.  Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation , 2003 .

[99]  G. Kwak,et al.  Synthesis and stable high oxygen permeability of poly(diphenylacetylene)s with two or three trimethylsilyl groups , 2002 .

[100]  K. Nagai,et al.  Poly[1-(trimethylsilyl)-1-propyne] and related polymers: Synthesis, properties and functions , 2001 .

[101]  A. Smith,et al.  A review of air separation technologies and their integration with energy conversion processes , 2001 .

[102]  R. Mahajan,et al.  Pushing the limits on possibilities for large scale gas separation: which strategies? , 2000 .

[103]  K. Nagai,et al.  Effect of physical aging of poly(1-trimethylsilyl-1-propyne) films synthesized with TaCl5 and NbCl5 on gas permeability, fractional free volume, and positron annihilation lifetime spectroscopy parameters , 2000 .

[104]  Benny D. Freeman,et al.  Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes , 1999 .

[105]  J. G. Wijmans,et al.  The solution-diffusion model: a review , 1995 .

[106]  R. Prasad,et al.  Evolution of membranes in commercial air separation , 1994 .

[107]  A. Burggraaf,et al.  Gas transport and separation with ceramic membranes. Part II: Synthesis and separation properties of microporous membranes , 1992 .

[108]  L. Robeson,et al.  Correlation of separation factor versus permeability for polymeric membranes , 1991 .

[109]  L. Struik,et al.  Physical aging in plastics and other glassy materials , 1977 .

[110]  Ying Sun,et al.  Hierarchically Microporous Membranes for Highly Energy-Efficient Gas Separations , 2023, Industrial Chemistry & Materials.

[111]  Suojiang Zhang,et al.  Ionic liquid enhancement of interface compatibility in mixed-linker ZIF-based mixed matrix membranes for advanced CO2/CH4 separation , 2022, Journal of Materials Chemistry A.

[112]  I. Pinnau,et al.  State-of-the-art polymers of intrinsic microporosity for high-performance gas separation membranes , 2022, Current Opinion in Chemical Engineering.

[113]  Zhongde Dai,et al.  PVA/PVP blend polymer matrix for hosting carriers in facilitated transport membranes: Synergistic enhancement of CO2 separation performance , 2020 .

[114]  S. Kong,et al.  Performance characteristics of a pilot-scale biomass gasifier using oxygen-enriched air and steam , 2013 .

[115]  W. F. Castle Air separation and liquefaction: recent developments and prospects for the beginning of the new millennium , 2002 .

[116]  H. Nakata,et al.  Carbon molecular sieve films from polyimide , 1992 .