Parallel Output-Sensitive Algorithms for Combinatorial and Linear Algebra Problems

This paper gives output-sensitive parallel algorithms whose performance depends on the output size and are significantly more efficient tan previous algorithms for problems with sufficiently small output size. Inputs are n_n matrices over a fixed ground field. Let P(n) and M(n) be the PRAM processor bounds for O(log n) time multiplication of two degree n polynomials, and n_n matrices, respectively. Let T(n) be the time bounds, using M(n) processors, for testing if an n_n matrix is nonsingular, and if so, computing its inverse. We compute the rank R of a matrix in randomized parallel time O(log n+T(R) log R) using nP(n)+M(R) processors (P(n)+RP(R) processors for constant displacement rank matrices, e.g., Toeplitz matrices). We find a maximum linearly independent subset (MLIS) of an n-set of n-dimensional vectors in time O(T(n) log n) using M(n) randomized processors and we also give output-sensitive algorithms for this problem. Applications include output-sensitive algorithms for finding: (i) a size R maximum matching in an n-vertex graph using time O(T(R) log n) and nP(n) T(R)+RM(R) processors, and (ii) a maximum matching in an n-vertex bipartite graph, with vertex subsets of sizes n1 n2 , using time O(T(n1) log n) and nP(n) T(n1)+ n1 M(n1) processors. 2001 Academic Press

[1]  Vijay V. Vazirani,et al.  The two-processor scheduling problem is in R-NC , 1985, STOC '85.

[2]  Erich Kaltofen,et al.  On Wiedemann's Method of Solving Sparse Linear Systems , 1991, AAECC.

[3]  Allan Borodin,et al.  Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[4]  Vijay V. Vazirani,et al.  Matching is as easy as matrix inversion , 1987, STOC.

[5]  Victor Y. Pan,et al.  Some polynomial and Toeplitz matrix computations , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[6]  Eli Upfal,et al.  Constructing a perfect matching is in random NC , 1985, STOC '85.

[7]  Robert E. Tarjan,et al.  Improved Algorithms for Bipartite Network Flow , 1994, SIAM J. Comput..

[8]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[9]  J. Hopcroft,et al.  Fast parallel matrix and GCD computations , 1982, FOCS 1982.

[10]  A. Ingleton,et al.  Gammoids and transversal matroids , 1973 .

[11]  Victor Y. Pan,et al.  Improved processor bounds for combinatorial problems in RNC , 1988, Comb..

[12]  Victor Y. Pan,et al.  Processor-efficient parallel solution of linear systems. II. The positive characteristic and singular cases , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[13]  Charles U. Martel,et al.  Fast Algorithms for Bipartite Network Flow , 1987, SIAM J. Comput..

[14]  Thomas Kailath,et al.  Divide-and-conquer solutions of least-squares problems for matrices with displacement structure , 1991 .

[15]  Jacob T. Schwartz,et al.  Fast Probabilistic Algorithms for Verification of Polynomial Identities , 1980, J. ACM.

[16]  Richard Zippel,et al.  Probabilistic algorithms for sparse polynomials , 1979, EUROSAM.

[17]  Wayne Eberly,et al.  Efficient parallel independent subsets and matrix factorizations , 1991, Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing.

[18]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[19]  M. Morf,et al.  Inverses of Toeplitz operators, innovations, and orthogonal polynomials , 1975, 1975 IEEE Conference on Decision and Control including the 14th Symposium on Adaptive Processes.

[21]  M. Morf,et al.  Displacement ranks of matrices and linear equations , 1979 .

[22]  B. Anderson,et al.  Asymptotically fast solution of toeplitz and related systems of linear equations , 1980 .

[23]  Joseph Cheriyan,et al.  Random Weighted Laplacians, Lovász minimum digraphs and finding minimum separators , 1993, SODA '93.

[24]  Joseph F. Traub,et al.  On Euclid's Algorithm and the Theory of Subresultants , 1971, JACM.

[25]  K. Mulmuley A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1987, Comb..

[26]  Thomas Kailath,et al.  Generalized Gohberg-Semencul Formulas for Matrix Inversion , 1989 .

[27]  Joseph JáJá,et al.  An Introduction to Parallel Algorithms , 1992 .

[28]  Vijay V. Vazirani,et al.  Maximum Matchings in General Graphs Through Randomization , 1989, J. Algorithms.

[29]  Victor Y. Pan,et al.  Processor efficient parallel solution of linear systems over an abstract field , 1991, SPAA '91.

[30]  David Y. Y. Yun,et al.  Fast Solution of Toeplitz Systems of Equations and Computation of Padé Approximants , 1980, J. Algorithms.

[31]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[32]  W. Gragg,et al.  Superfast solution of real positive definite toeplitz systems , 1988 .

[33]  Bruce Ronald. Musicus,et al.  Levinson and fast Choleski algorithms for Toeplitz and almost Toeplitz matrices , 1988 .

[34]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[35]  John H. Reif,et al.  Synthesis of Parallel Algorithms , 1993 .

[36]  Verzekeren Naar Sparen,et al.  Cambridge , 1969, Humphrey Burton: In My Own Time.