Theoretical investigations on Ziegler-Natta catalysis: Coordination of the electron donors to titanium modified MgCl2 support

[1]  T. Pakkanen,et al.  Theoretical investigations on Ziegler-Natta catalysis: models for the interactions of the TiCl4 catalyst and the MgCl2 support , 1995 .

[2]  O. Novaro Ab initio studies on the Ziegler-Natta catalytic process , 1992 .

[3]  K. Morokuma,et al.  An ab initio MO study on ethylene and propylene insertion into the titanium-methyl bond in CH3TiCl2+ as a model of homogeneous olefin polymerization , 1992 .

[4]  M. Guest,et al.  Explanation of the unexpected differences in the ground states of dimethyl- and dichlorobis(1,2-bis(dimethylphosphino)ethane)titanium , 1991 .

[5]  C. A. Jolly,et al.  The direct insertion mechanism in Ziegler-Natta polymerization: a theoretical study of Cp2TiCH3+ + C2H4 .fwdarw. Cp2TiC3H7+ , 1989 .

[6]  C. Bauschlicher,et al.  Theoretical studies of the first- and second-row transition-metal methyls and their positive ions , 1989 .

[7]  C. A. Jolly,et al.  Ground-state geometries and inversion barriers for simple complexes of early transition metals , 1989 .

[8]  J. Sauer Molecular models in ab initio studies of solids and surfaces: from ionic crystals and semiconductors to catalysts , 1989 .

[9]  A. Marigo,et al.  The crystal structure of MgCl2·6C2H5OH , 1989 .

[10]  Pavel Hobza,et al.  Intermolecular interactions between medium-sized systems. Nonempirical and empirical calculations of interaction energies. Successes and failures , 1988 .

[11]  Warren J. Hehre,et al.  Molecular orbital theory of the properties of inorganic and organometallic compounds 5. Extended basis sets for first‐row transition metals , 1987 .

[12]  J. M. Simoes,et al.  Agostic bonds in (MCH3)+ fragments. Implications for M+-CH3 bond dissociation energies , 1987 .

[13]  B. Goodall The history and current state of the art of propylene polymerization catalysts , 1986 .

[14]  K. Morokuma,et al.  Role of agostic interaction in .beta.-elimination of palladium and nickel complexes. An ab initio MO study , 1985 .

[15]  Nobuaki Koga,et al.  A theoretical study of olefin insertions into titanium-carbon and titanium-hydrogen bonds. An analysis by paired interacting orbitals , 1985 .

[16]  J. Dorrepaal Revised crystal data for magnesium dichloride, MgCl2 , 1984 .

[17]  K. Morokuma,et al.  Intramolecular CH...M interaction: theoretical study of the structure of the six-coordinate ethyldiphosphinetitanium complex EtTi(PH3)2X2Y , 1984 .

[18]  A. Balazs,et al.  A SCF‐Xα‐SW molecular‐orbital study of a possible reaction path for Ziegler–Natta catalysis , 1982 .

[19]  R. Mülhaupt,et al.  Stereospecific Polymerization of Propylene: An Outlook 25 Years after Its Discovery , 1980 .

[20]  J. Labarre,et al.  A theoretical investigation of the oligomerization of ethylene by titanium compounds: the TiMeCl3 · C2H4 system as a model for a quantitative evaluation of the cossee mechanism , 1979 .

[21]  E. Clementi,et al.  Theoretical study on a reaction pathway of Ziegler–Natta‐type catalysis , 1978 .

[22]  E. Clementi,et al.  Restricted Hartree-Fock calculations on the interaction of an olefine with a titanium compound , 1977 .

[23]  O. Novaro,et al.  Mechanism of oligomerization of α-olefins with Ziegler-Natta catalysts , 1976 .

[24]  O. Novaro,et al.  On the structure of titanium-aluminum catalytic complexes , 1976 .

[25]  P. J. Jones,et al.  Molecular-modelling studies of the polypropylene catalyst , 1994 .

[26]  C. Catlow,et al.  Computer-modelling studies on MgCl2-supported Ziegler–Natta catalysts , 1993 .

[27]  K. Morokuma,et al.  SiC agostic interaction with Ti: origin of alkenyl group distortion in Ti(C(SiH2CH3)=CH2)X2+. An ab initio MO study , 1988 .