Some Properties and Applications of Fuzzy Quasi-Pseudo-Metric Spaces

In this paper we establish some properties of fuzzy quasi-pseudo-metric spaces. An im- portant result is that any partial ordering can be defined by a fuzzy quasi-metric, which can be applied both in theoretical computer science and in information theory, where it is usual to work with sequences of objects of increasing information. We also obtain decomposition theorems of a fuzzy quasi-pseudo metric into a right continuous and ascending family of quasi-pseudo metrics. We develop a topological foundation for complexity analysis of algorithms and programs, and based on our results a fuzzy complexity space can be considered. Also, we built a fertile ground to study some types of fuzzy quasi-pseudo-metrics on the domain of words, which play an important role on denotational semantics, and on the poset BX of all closed formal balls on a metric space.

[1]  A. George,et al.  On some results in fuzzy metric spaces , 1994 .

[2]  S. G. Matthews,et al.  Partial Metric Topology , 1994 .

[3]  Abbas Edalat,et al.  A Computational Model for Metric Spaces , 1998, Theor. Comput. Sci..

[4]  R. Plebaniak New generalized fuzzy metrics and fixed point theorem in fuzzy metric space , 2014 .

[5]  Ivan Kramosil,et al.  Fuzzy metrics and statistical metric spaces , 1975, Kybernetika.

[6]  Aurel Vlaicu,et al.  Fuzzy Euclidean Normed Spaces for Data Mining Applications , 2015 .

[7]  B. Schweizer,et al.  Statistical metric spaces. , 1960 .

[8]  Michael B. Smyth,et al.  Quasi Uniformities: Reconciling Domains with Metric Spaces , 1987, MFPS.

[9]  Hans-Peter A. Künzi,et al.  Nonsymmetric Distances and Their Associated Topologies: About the Origins of Basic Ideas in the Area of Asymmetric Topology , 2001 .

[10]  On Nonsymmetric Topological and Probabilistic Structures , 2009 .

[11]  Sorin Nadaban,et al.  Atomic Decompositions of Fuzzy Normed Linear Spaces for Wavelet Applications , 2014, Informatica.

[12]  S. Romaguera,et al.  Quasi-metrics and monotone normality , 2011 .

[13]  Salvador Romaguera,et al.  Quasi-metric properties of complexity spaces , 1999 .

[14]  Chengdu Sichuan,et al.  Generalized Fuzzy Metric Spaces with Properties , 2010 .

[15]  K. Menger Statistical Metrics. , 1942, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Abbas Edalat,et al.  A Domain-Theoretic Approach to Computability on the Real Line , 1999, Theor. Comput. Sci..

[17]  N. R. Das,et al.  A Fixed Point Theorem in a Generalized Fuzzy Metric Space , 2014 .

[18]  Francesc Esteva,et al.  Review of Triangular norms by E. P. Klement, R. Mesiar and E. Pap. Kluwer Academic Publishers , 2003 .

[19]  A. Amini-Harandi,et al.  Metric-like spaces, partial metric spaces and fixed points , 2012, Fixed Point Theory and Applications.

[20]  Osmo Kaleva,et al.  On fuzzy metric spaces , 1984 .

[21]  Yong-woon Kim Pseudo quasi metric spaces , 1968 .

[22]  Michel P. Schellekens,et al.  The Smyth completion: a common foundation for denotational semantics and complexity analysis , 1995, MFPS.

[23]  H. Kunzi Complete quasi-pseudo-metric spaces , 1992 .

[24]  Fletcher Quasi-Uniform Spaces , 1982 .

[25]  W. A. Wilson On Quasi-Metric Spaces , 1931 .

[26]  T. Bag Fuzzy Cone Metric Spaces and Fixed Point Theorems on Fuzzy T-Kannan & Fuzzy T-Chatterjea Type Contractive Mappings , 2015 .

[27]  S. Romaguera,et al.  A characterization of Smyth complete quasi-metric spaces via Caristi’s fixed point theorem , 2015 .

[28]  T. Bag Fuzzy cone metric spaces and fixed point theorems of contractive mappings , 2022 .

[29]  Ralph Kopperman,et al.  Partial Metric Spaces , 1992, Am. Math. Mon..

[30]  Valentín Gregori,et al.  Fuzzy quasi-metric spaces , 2004 .

[31]  Reinhold Heckmann,et al.  Approximation of Metric Spaces by Partial Metric Spaces , 1999, Appl. Categorical Struct..