Substitutions into the trigonal bipyramidal site of InGaCuO4

[1]  Y. Yoneda,et al.  Magnetic and dielectric properties of InFe2O4, InFeCuO4, and InGaCuO4. , 2008, Inorganic chemistry.

[2]  J. Berry,et al.  Diamagnetic Corrections and Pascal's Constants , 2008 .

[3]  S. Mori,et al.  Magnetic and dielectric properties of RFe2O4, RFeMO4, and RGaCuO4 (R=Yb and Lu, M=Co and Cu) , 2007 .

[4]  Tao He,et al.  Giant Room–Temperature Magnetodielectric Response in the Electronic Ferroelectric LuFe2O4 , 2006 .

[5]  N. Vittayakorn,et al.  Conductivity anomaly in CuInGaO4 and CuIn2Ga2O7 ceramics , 2004 .

[6]  Brian H. Toby,et al.  EXPGUI, a graphical user interface for GSAS , 2001 .

[7]  M. Nespolo,et al.  Crystal structure and charge distribution of YbFeMnO4. , 2000, Acta crystallographica. Section B, Structural science.

[8]  T. Moriga,et al.  Crystal Structures and Electrical and Optical Properties of MgIn2−xGaxO4Solid Solutions , 1999 .

[9]  N. Kimizuka,et al.  Structural classification ofRAO3(MO)n compounds (R =Sc, In, Y, or lanthanides; A =Fe(III), Ga, Cr, or Al; M =divalent cation; n = 1–11) , 1989 .

[10]  Noboru Kimizuka,et al.  Spinel, YbFe2O4, and Yb2Fe3O7 types of structures for compounds in the In2O3 and Sc2O3A2O3BO systems [A: Fe, Ga, or Al; B: Mg, Mn, Fe, Ni, Cu, or Zn] at temperatures over 1000°C , 1985 .

[11]  D. Reinen,et al.  Cu2+ in trigonal‐bipyramidaler Koordination: Die Struktur des CuGaInO4 , 1981 .

[12]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .