Chaos synchronization for master slave piecewise linear systems: Application to Chua's circuit

This paper deals with chaos synchronization for master slave piecewise linear systems. The synchronization problem is formulated as a global stability problem of error synchronization dynamics. New sufficient conditions are provided using a Lyapunov approach and the so-called S-procedure. We show that the synchronization problem can be solved as an optimization problem subject to a set of Linear Matrix Inequalities (LMI) for which a state feedback controller is designed efficiently. The effectiveness of the proposed solution is verified via simulation results using the original Chua’s circuit model. Furthermore, it will be proven that the new sufficient conditions relaxed the conservatism of previous existing works.

[1]  Min Wu,et al.  Improved Global Asymptotical Synchronization of Chaotic Lur'e Systems With Sampled-Data Control , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  A. Stephen Morse,et al.  Control Using Logic-Based Switching , 1997 .

[3]  Jiye Zhang,et al.  Synchronizing chaotic systems using backstepping design , 2003 .

[4]  Albert C. J. Luo,et al.  A theory for synchronization of dynamical systems , 2009 .

[5]  Yang Tao,et al.  Impulsive stabilization for control and synchronization of chaotic systems: theory and application to secure communication , 1997 .

[6]  L. Chua,et al.  A universal circuit for studying and generating chaos. I. Routes to chaos , 1993 .

[7]  Li Guo-Hui An active control synchronization for two modified Chua circuits , 2005 .

[8]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[9]  David J. Hill,et al.  Global Asymptotical Synchronization of Chaotic Lur'e Systems Using Sampled Data: A Linear Matrix Inequality Approach , 2008, IEEE Transactions on Circuits and Systems II: Express Briefs.

[10]  Louis M. Pecora,et al.  Fundamentals of synchronization in chaotic systems, concepts, and applications. , 1997, Chaos.

[11]  Michael Peter Kennedy,et al.  The role of synchronization in digital communications using chaos. II. Chaotic modulation and chaotic synchronization , 1998 .

[12]  Alexey A Koronovskii,et al.  An approach to chaotic synchronization. , 2004, Chaos.

[13]  J. Suykens,et al.  Robust synthesis for master-slave synchronization of Lur'e systems , 1999 .

[14]  A. Luo Singularity and Dynamics on Discontinuous Vector Fields , 2012 .

[15]  Jinde Cao,et al.  Synchronization criteria of Lur’e systems with time-delay feedback control , 2005 .

[16]  A. Morse,et al.  Basic problems in stability and design of switched systems , 1999 .

[17]  Wei Xing Zheng,et al.  An LMI criterion for linear-state-feedback based chaos synchronization of a class of chaotic systems , 2005 .

[18]  David J. Hill,et al.  Impulsive Synchronization of Chaotic Lur'e Systems by Linear Static Measurement Feedback: An LMI Approach , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  X. Liao,et al.  Fuzzy modeling and synchronization of hyperchaotic systems , 2005 .

[20]  Thomas Kailath,et al.  Linear Systems , 1980 .

[21]  Gang Feng,et al.  Output Tracking of Piecewise-Linear Systems via Error Feedback Regulator With Application to Synchronization of Nonlinear Chua's Circuit , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[22]  Teh-Lu Liao,et al.  Adaptive synchronization of chaotic systems and its application to secure communications , 2000 .

[23]  Jun-Juh Yan,et al.  Synchronization of a modified Chua's circuit system via adaptive sliding mode control , 2008 .

[24]  Gang Feng,et al.  Output tracking and synchronization of chaotic Chua’s circuit with disturbances via model predictive regulator , 2009 .

[25]  Y. Soh,et al.  The stabilization and synchronization of Chua's oscillators via impulsive control , 2001 .

[26]  Fu Shi-Hui,et al.  Chaotic synchronization of Chua’s circuits with nonlinear control , 2010 .

[27]  Xiaofeng Liao,et al.  Complete and lag synchronization of hyperchaotic systems using small impulses , 2004 .

[28]  K. Thamilmaran,et al.  Rich Variety of bifurcations and Chaos in a Variant of Murali-Lakshmanan-Chua Circuit , 2000, Int. J. Bifurc. Chaos.

[29]  G. Zhong Implementation of Chua's circuit with a cubic nonlinearity , 1994 .

[30]  L. Chua,et al.  The double scroll family , 1986 .

[31]  Yinping Zhang,et al.  Chaotic synchronization and anti-synchronization based on suitable separation , 2004 .

[32]  A. Sharkovsky,et al.  Chaos from a time-delayed Chua's circuit , 1993 .

[33]  Qing-Long Han,et al.  On Designing Time-Varying Delay Feedback Controllers for Master–Slave Synchronization of Lur'e Systems , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[34]  M. T. Yassen,et al.  Adaptive control and synchronization of a modified Chua's circuit system , 2003, Appl. Math. Comput..

[35]  Leon O. Chua,et al.  A family of n-scroll attractors from a generalized Chua's circuit , 1997 .

[36]  P. Arena,et al.  Chua's circuit can be generated by CNN cells , 1995 .

[37]  M. Naschie A note on Heisenberg's uncertainty principle and Cantorian space-time , 1992 .

[38]  Leon O. Chua,et al.  ADAPTIVE SYNCHRONIZATION OF CHUA'S OSCILLATORS , 1996 .

[39]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[40]  Guanrong Chen,et al.  Generation of n-scroll attractors via sine function , 2001 .

[41]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .