Application of reduced-order models based on PCA & Kriging for the development of digital twins of reacting flow applications

[1]  Nanda Kambhatla,et al.  Dimension Reduction by Local Principal Component Analysis , 1997, Neural Computation.

[2]  I. Jolliffe Principal Component Analysis , 2002 .

[3]  Matthias W. Seeger,et al.  Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..

[4]  Christine A. Shoemaker,et al.  Constrained Global Optimization of Expensive Black Box Functions Using Radial Basis Functions , 2005, J. Glob. Optim..

[5]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[6]  Olivier P. Le Maître,et al.  Polynomial chaos expansion for sensitivity analysis , 2009, Reliab. Eng. Syst. Saf..

[7]  Leonardo Tognotti,et al.  Identification of low-dimensional manifolds in turbulent flames , 2009 .

[8]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[9]  Alessandro Parente,et al.  Combustion modeling using principal component analysis , 2009 .

[10]  Leonardo Tognotti,et al.  Investigation of the MILD combustion regime via Principal Component Analysis , 2009 .

[11]  Piotr Breitkopf,et al.  Model reduction by CPOD and Kriging , 2010 .

[12]  Simona Silvia Merola,et al.  POD-based analysis of combustion images in optically accessible engines , 2010 .

[13]  H. Abdi,et al.  Principal component analysis , 2010 .

[14]  Jianbo Yu,et al.  Local and global principal component analysis for process monitoring , 2012 .

[15]  Katarzyna Bizon,et al.  Optimal model reduction by empirical spectral methods via sampling of chaotic orbits , 2012 .

[16]  Katarzyna Bizon,et al.  Reduced order modelling of chemical reactors with recycle by means of POD-penalty method , 2012, Comput. Chem. Eng..

[17]  Piotr Breitkopf,et al.  Enhanced POD projection basis with application to shape optimization of car engine intake port , 2012 .

[18]  B. Ma,et al.  Effects of Fuel Dilution and Gravity on Laminar Coflow Methane-Air Diffusion Flames : A Computational and Experimental Investigation , 2013 .

[19]  Christine A. Shoemaker,et al.  SO-MI: A surrogate model algorithm for computationally expensive nonlinear mixed-integer black-box global optimization problems , 2013, Comput. Oper. Res..

[20]  Piotr Breitkopf,et al.  Constrained Proper Orthogonal Decomposition based on QR-factorization for aerodynamical shape optimization , 2013, Appl. Math. Comput..

[21]  Caroline Sainvitu,et al.  Adaptive sampling strategies for non‐intrusive POD‐based surrogates , 2013 .

[22]  Tiziano Faravelli,et al.  Numerical Modeling of Laminar Flames with Detailed Kinetics Based on the Operator-Splitting Method , 2013 .

[23]  Seddik Djouadi,et al.  Local Proper Orthogonal Decomposition based on space vectors clustering , 2013, 3rd International Conference on Systems and Control.

[24]  Tiziano Faravelli,et al.  A computational tool for the detailed kinetic modeling of laminar flames: Application to C2H4/CH4 coflow flames , 2013 .

[25]  Alessandro Parente,et al.  Principal component analysis of turbulent combustion data: Data pre-processing and manifold sensitivity , 2013 .

[26]  Weihong Zhang,et al.  Proper orthogonal decomposition with high number of linear constraints for aerodynamical shape optimization , 2014, Appl. Math. Comput..

[27]  Axel Coussement,et al.  Reduced-order PCA models for chemical reacting flows , 2014 .

[28]  Qiqi Wang,et al.  Erratum: Active Subspace Methods in Theory and Practice: Applications to Kriging Surfaces , 2013, SIAM J. Sci. Comput..

[29]  N. Smaoui,et al.  A nonlinear principal component analysis approach for turbulent combustion composition space , 2014 .

[30]  Fumiaki Takahashi,et al.  A computational and experimental study of coflow laminar methane/air diffusion flames: Effects of fuel dilution, inlet velocity, and gravity , 2015 .

[31]  Jeremy N. Thornock,et al.  Advanced regression methods for combustion modelling using principal components , 2015 .

[32]  Hessam Mirgolbabaei,et al.  Principal component transport in turbulent combustion: A posteriori analysis , 2015 .

[33]  Axel Coussement,et al.  Assessment of different chemistry reduction methods based on principal component analysis: Comparison of the MG-PCA and score-PCA approaches , 2016 .

[34]  Rolf Steinhilper,et al.  The Digital Twin: Demonstrating the Potential of Real Time Data Acquisition in Production Systems ☆ , 2017 .

[35]  Sandro Wartzack,et al.  Shaping the digital twin for design and production engineering , 2017 .

[36]  Paul J. Turinsky,et al.  Surrogate based model calibration for pressurized water reactor physics calculations , 2017 .

[37]  Axel Coussement,et al.  Feature extraction and reduced-order modelling of nitrogen plasma models using principal component analysis , 2018, Comput. Chem. Eng..

[38]  Christodoulos A. Floudas,et al.  Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations , 2018, Comput. Chem. Eng..

[39]  Efstratios N. Pistikopoulos,et al.  Optimal design of energy systems using constrained grey-box multi-objective optimization , 2018, Comput. Chem. Eng..

[40]  Reiner Anderl,et al.  Digital twin – Proof of concept , 2018 .

[41]  Alessio Frassoldati,et al.  Optimization of Chemical Kinetics for Methane and Biomass Pyrolysis Products in Moderate or Intense Low-Oxygen Dilution Combustion , 2018, Energy & Fuels.

[42]  Guang Lin,et al.  On the Bayesian calibration of expensive computer models with input dependent parameters , 2017 .