Binary GCD Like Algorithms for Some Complex Quadratic Rings

On the lines of the binary gcd algorithm for rational integers, algorithms for computing the gcd are presented for the ring of integers in \(\mathbb{Q}(\sqrt{d})\) where d ∈ { − 2, − 7, − 11, − 19}. Thus a binary gcd like algorithm is presented for a unique factorization domain which is not Euclidean (case d=-19). Together with the earlier known binary gcd like algorithms for the ring of integers in \(\mathbb{Q}(\sqrt{-1})\) and \(\mathbb{Q}(\sqrt{-3})\), one now has binary gcd like algorithms for all complex quadratic Euclidean domains. The running time of our algorithms is O(n 2) in each ring. While there exists an O(n 2) algorithm for computing the gcd in quadratic number rings by Erich Kaltofen and Heinrich Rolletschek, it has large constants hidden under the big-oh notation and it is not practical for medium sized inputs. On the other hand our algorithms are quite fast and very simple to implement.

[1]  Arnold Schönhage,et al.  Schnelle Berechnung von Kettenbruchentwicklungen , 1971, Acta Informatica.

[2]  J. Stein Computational problems associated with Racah algebra , 1967 .

[3]  Jonathan P. Sorenson Two Fast GCD Algorithms , 1994, J. Algorithms.

[4]  H. M. Stark,et al.  A complete determination of the complex quadratic fields of class-number one. , 1967 .

[5]  Franz Lemmermeyer,et al.  THE EUCLIDEAN ALGORITHM IN ALGEBRAIC NUMBER FIELDS , 2004 .

[6]  Robin Milner An Action Structure for Synchronous pi-Calculus , 1993, FCT.

[7]  Michael Rosen,et al.  A classical introduction to modern number theory , 1982, Graduate texts in mathematics.

[8]  Jeffrey Shallit,et al.  Algorithmic Number Theory , 1996, Lecture Notes in Computer Science.

[9]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[10]  D. H. Lehmer Euclid's Algorithm for Large Numbers , 1938 .

[11]  Heinrich Rolletschek,et al.  On the Number of Divisions of the Euclidean Algorithm Applied to Gaussian Integers , 1986, J. Symb. Comput..

[12]  Henri Cohen,et al.  Hermite and Smith normal form algorithms over Dedekind domains , 1996, Math. Comput..

[13]  André Weilert,et al.  Asymptotically Fast GCD Computation in Z[i] , 2000, ANTS.

[14]  André Weilert,et al.  (1+i)-ary GCD Computation in Z[i] as an Analogue to the Binary GCD Algorithm , 2000, J. Symb. Comput..

[15]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[16]  Renate Scheidler,et al.  A public-key cryptosystem utilizing cyclotomic fields , 1995, Des. Codes Cryptogr..

[17]  Ivan Damgård,et al.  Efficient algorithms for the gcd and cubic residuosity in the ring of Eisenstein integers , 2003, J. Symb. Comput..

[18]  H. Lenstra Euclid's Algorithm in Cyclotomic Fields , 1975 .

[19]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[20]  George E. Collins A Fast Euclidean Algorithm for Gaussian Integers , 2002, J. Symb. Comput..

[21]  Erich Kaltofen,et al.  Computing greatest common divisors and factorizations in quadratic number fields , 1989 .