Chaotic dynamics of off-equatorial orbits around pseudo-Newtonian compact objects with dipolar halos

In this paper, we implement a generalised pseudo-Newtonian potential and prescribe a numerical fitting formalism to study the off-equatorial orbits inclined at a certain angle with the equatorial plane around both Schwarzschild and Kerr-like compact object primaries surrounded by a dipolar halo of matter. The chaotic dynamics of the orbits are detailed for both non-relativistic and special-relativistic test particles. The dependence of the degree of chaos on the rotation parameter $a$ and the inclination angle $i$ is established individually using widely used indicators, such as the Poincar\'e Map and the Lyapunov Characteristic Number. We find that although the chaoticity of the orbits has a positive correlation with $i$, the growth in the chaotic behaviour is not systematic. There exists a threshold value of the inclination angle $i_{\text{c}}$, after which the degree of chaos shows a sharp increase. On the other hand, the chaoticity of the inclined orbits anti-correlates with $a$ throughout its entire range. However, the negative correlation is systematic at lower values of the inclination angle. At higher values of $i$, the degree of chaos is maximum for the maximally counter-rotating compact objects, the Kerr parameter of which is below a threshold value $a_{\text{c}}$. Above this threshold value, the correlation becomes weak. Furthermore, we establish a qualitative correlation between the threshold values and the overall chaoticity. The studies performed with different orbital parameters and several initial conditions reveal the intricate nature of the system.

[1]  F. L. Dubeibe,et al.  Effect of Multipole Moments in the Weak Field Limit of a Black Hole Plus Halo Potential , 2021, 2108.05210.

[2]  William Borrelli,et al.  Timescales of the chaos onset in the general relativistic Poynting-Robertson effect , 2021, 2105.00965.

[3]  S. Roychowdhury,et al.  Beyond-Newtonian dynamics of a planar circular restricted three-body problem with Kerr-like primaries , 2020, Monthly Notices of the Royal Astronomical Society.

[4]  William Borrelli,et al.  Detection of chaos in the general relativistic Poynting-Robertson effect: Kerr equatorial plane , 2020, 2001.04979.

[5]  F. D. Lora-Clavijo,et al.  Pseudo-Newtonian planar circular restricted 3-body problem , 2016, 1605.06204.

[6]  T. Das,et al.  Influence of the black hole spin on the chaotic particle dynamics within a dipolar halo , 2016, 1601.02100.

[7]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[8]  V. Karas,et al.  Regular and chaotic motion in general relativity: The case of an inclined black hole magnetosphere , 2014, 1412.7651.

[9]  A. Bhadra,et al.  Newtonian analogue of corresponding space–time dynamics of rotating black holes: implication for black hole accretion , 2014, 1410.7900.

[10]  Y. Zlochower,et al.  Remnant mass, spin, and recoil from spin aligned black-hole binaries , 2014, 1406.7295.

[11]  V. Karas,et al.  INDUCING CHAOS BY BREAKING AXIAL SYMMETRY IN A BLACK HOLE MAGNETOSPHERE , 2014, 1404.5495.

[12]  A. Sesana,et al.  LINKING THE SPIN EVOLUTION OF MASSIVE BLACK HOLES TO GALAXY KINEMATICS , 2014, 1402.7088.

[13]  D. Garofalo Retrograde versus Prograde Models of Accreting Black Holes , 2013, 1304.3397.

[14]  A. Perego,et al.  ON THE ORIENTATION AND MAGNITUDE OF THE BLACK HOLE SPIN IN GALACTIC NUCLEI , 2012, 1211.4871.

[15]  O. Semer'ak,et al.  Free Motion around Black Holes with Disks or Rings: Between Integrability and Chaos–V , 2012, The Astrophysical Journal.

[16]  Stanford,et al.  Prograde and retrograde black holes: whose jet is more powerful? , 2012, 1201.4385.

[17]  A. Fabian,et al.  Probing relativistic astrophysics around SMBHs: The Suzaku AGN spin survey , 2011, 1112.0036.

[18]  P. Letelier,et al.  Chaotic motion in axially symmetric potentials with oblate quadrupole deformation , 2011 .

[19]  R. Daly Estimates of black hole spin properties of 55 sources , 2011, 1103.0940.

[20]  E. Gerlach,et al.  Numerical integration of variational equations. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[21]  O. Semer'ak,et al.  Free motion around black holes with discs or rings: between integrability and chaos - II: Chaos around black holes with discs or rings , 2010, 1211.4106.

[22]  B. Mukhopadhyay,et al.  DISK-OUTFLOW COUPLING: ENERGETICS AROUND SPINNING BLACK HOLES , 2009, 0911.3049.

[23]  Laeff,et al.  STELLAR-MASS BLACK HOLE SPIN CONSTRAINTS FROM DISK REFLECTION AND CONTINUUM MODELING , 2009, 0902.2840.

[24]  P. Letelier,et al.  Stability of Orbits around a Spinning Body in a Pseudo-Newtonian Hill Problem , 2008, 0811.4049.

[25]  H. Koyama,et al.  CHAOTIC MOTION OF CHARGED PARTICLES IN AN ELECTROMAGNETIC FIELD SURROUNDING A ROTATING BLACK HOLE , 2008, 0807.0277.

[26]  V. Karas,et al.  Off-equatorial orbits in strong gravitational fields near compact objects , 2008, 0803.3155.

[27]  B. Mukhopadhyay,et al.  Generalized Pseudo-Newtonian Potential for Studying Accretion Disk Dynamics in Off-Equatorial Planes around Rotating Black Holes: Description of a Vector Potential , 2007, 0706.2221.

[28]  L. Rezzolla,et al.  Circular and non-circular nearly horizon-skimming orbits in Kerr spacetimes , 2007, 0704.0138.

[29]  S. Chakrabarti,et al.  Studies of accretion flows around rotating black holes – I. Particle dynamics in a pseudo‐Kerr potential , 2006 .

[30]  S. Ghosh,et al.  Rotating central objects with hard surfaces: A pseudo-Newtonian potential for relativistic accretion disks , 2004 .

[31]  M. N. Vrahatis,et al.  Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.

[32]  Juhua Chen,et al.  Chaotic dynamics of a test particle around a gravitational field with a dipole , 2003 .

[33]  D. Vogt,et al.  Exact general relativistic perfect fluid disks with halos , 2003, gr-qc/0308031.

[34]  P. Letelier,et al.  Geodesic chaos around quadrupolar deformed centers of attraction. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[35]  R. Misra,et al.  Pseudo-Newtonian Potentials to Describe the Temporal Effects on Relativistic Accretion Disks around Rotating Black Holes and Neutron Stars , 2002, astro-ph/0209042.

[36]  C. Poole,et al.  Classical Mechanics, 3rd ed. , 2002 .

[37]  B. Mukhopadhyay Description of Pseudo-Newtonian Potential for the Relativistic Accretion Disks around Kerr Black Holes , 2002, astro-ph/0205475.

[38]  Ch. Skokos,et al.  Alignment indices: a new, simple method for determining the ordered or chaotic nature of orbits , 2001 .

[39]  G. Tancredi,et al.  A Comparison between Methods to Compute Lyapunov Exponents , 2001 .

[40]  P. Letelier,et al.  Chaotic motion around prolate deformed bodies. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  P. Letelier,et al.  Chaos in pseudo-Newtonian black holes with halos , 2001, astro-ph/0101140.

[42]  A. Fabian,et al.  Active Galactic Nuclei , 1997 .

[43]  V. Karas,et al.  Pseudo-Newtonian models of a rotating black hole field , 1999, astro-ph/9901289.

[44]  P. Letelier,et al.  Relativistic and Newtonian Core-Shell Models: Analytical and Numerical Results , 1998, astro-ph/9809257.

[45]  P. Letelier,et al.  Chaos and rotating black holes with halos , 1997, gr-qc/9712008.

[46]  V. Reshetnikov,et al.  Global structure and formation of polar-ring galaxies , 1997 .

[47]  F. Meyer Formation of the outer rings of Supernova 1987A , 1997 .

[48]  G. Bjoernsson,et al.  Modified Newtonian Potentials for the Description of Relativistic Effects in Accretion Disks around Black Holes , 1996 .

[49]  R. Kirshner,et al.  On the Nature of the Outer Rings around SN 1987A , 1996 .

[50]  Letelier,et al.  Chaos around a Hénon-Heiles-inspired exact perturbation of a black hole. , 1996, Physical review letters.

[51]  S. Chakrabarti,et al.  A Newtonian description of the geometry around a rotating black hole , 1992 .

[52]  R. Wagoner,et al.  Diskoseismology: Probing Accretion Disks. I. Trapped Adiabatic Oscillations , 1991 .

[53]  L. Sparke,et al.  THE DARK HALO OF THE POLAR-RING GALAXY NGC-4650A , 1990 .

[54]  F. Combes,et al.  Dynamical friction and shells around elliptical galaxies , 1987 .

[55]  P. Quinn,et al.  Formation and dynamics of shells around elliptical galaxies , 1984 .

[56]  P. Seymour Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects , 1984 .

[57]  D. Malin,et al.  A catalog of elliptical galaxies with shells. , 1983 .

[58]  F. L. Dubeibe,et al.  Equilibrium Points and Networks of Periodic Orbits in the Pseudo-Newtonian Planar Circular Restricted Three-body Problem , 2022 .

[59]  H. Thirring On the influence of the proper rotation of a central body on the motion of the planets and the moon, according to Einstein’s theory of gravitation. , 2014 .

[60]  王颖,et al.  Dynamics of particles around a pseudo-Newtonian Kerr black hole with halos , 2012 .

[61]  Gaëtan Kerschen,et al.  Topics in Nonlinear Dynamics , 2012 .

[62]  王颖,et al.  Gravitational Waves from a Pseudo-Newtonian Kerr Field with Halos , 2011 .

[63]  V. Karas,et al.  Off-equatorial orbits in strong gravitational fields near compact objects—II: halo motion around magnetic compact stars and magnetized black holes , 2010 .

[64]  J. Ziolkowski Population of Galactic black holes. , 2010 .

[65]  Richard H. Price,et al.  Black Holes , 1997 .

[66]  Ch. Skokos,et al.  Geometrical properties of local dynamics in Hamiltonian systems: the Generalized Alignment Index (GALI) method , 2007 .

[67]  S. Tremaine,et al.  Galactic Dynamics , 2005 .

[68]  E. Lega,et al.  FAST LYAPUNOV INDICATORS. APPLICATION TO ASTEROIDAL MOTION , 1997 .

[69]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[70]  G. Longo,et al.  Studies of narrow polar rings around E galaxies. II: The UV spectrum of AM 2020-504 , 1993 .

[71]  E. Cappellaro,et al.  Studies of narrow polar rings around E galaxies. I : Observations and model of AM 2020-504 , 1992 .

[72]  J. W. Humberston Classical mechanics , 1980, Nature.

[73]  Bohdan Paczynski,et al.  Thick accretion disks and supercritical luminosities. , 1979 .