Structure solution of DNA-binding proteins and complexes with ARCIMBOLDO libraries

The structure solution of DNA-binding protein structures and complexes based on the combination of location of DNA-binding protein motif fragments with density modification in a multi-solution frame is described.

[1]  C. Müller,et al.  Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. , 2006, Molecular cell.

[2]  Haruki Nakamura,et al.  Announcing the worldwide Protein Data Bank , 2003, Nature Structural Biology.

[3]  G. Sheldrick,et al.  Geometric properties of nucleic acids with potential for autobuilding , 2010, Acta crystallographica. Section A, Foundations of crystallography.

[4]  M. Woolfson,et al.  ACORN: a review. , 2006, Acta crystallographica. Section D, Biological crystallography.

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  R. Brennan,et al.  The conformations of the manganese transport regulator of Bacillus subtilis in its metal-free state. , 2007, Journal of molecular biology.

[7]  I. Tanaka,et al.  DNA recognition mechanism of the ONECUT homeodomain of transcription factor HNF-6. , 2007, Structure.

[8]  John W. R. Schwabe,et al.  The crystal structure of a two zinc-finger peptide reveals an extension to the rules for zinc-finger/DNA recognition , 1993, Nature.

[9]  R. Laskowski,et al.  Crystal Structure of Enterococcus faecalis SlyA-like Transcriptional Factor* , 2003, Journal of Biological Chemistry.

[10]  Mishra Ashwini,et al.  初期エンドソーム自己抗原1(EEA1)のC2H2亜鉛フィンガーによるRab GTPアーゼ認識とエンドソーム繋留の構造基盤 , 2010 .

[11]  R. Zenobi,et al.  The Leucine Zipper Domains of the Transcription Factors GCN4 and c-Jun Have Ribonuclease Activity , 2010, PloS one.

[12]  S. Harrison,et al.  Differing roles for zinc fingers in DNA recognition: structure of a six-finger transcription factor IIIA complex. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[13]  J. Berg,et al.  A 2.2 Å resolution crystal structure of a designed zinc finger protein bound to DNA , 1996, Nature Structural Biology.

[14]  Seth M. Cohen,et al.  Characterization and structure of the manganese-responsive transcriptional regulator ScaR. , 2009, Biochemistry.

[15]  David J Segal,et al.  Structure of Aart, a designed six-finger zinc finger peptide, bound to DNA. , 2006, Journal of molecular biology.

[16]  A. Klug,et al.  Invariance of the zinc finger module: A comparison of the free structure with those in nucleic‐acid complexes , 2007, Proteins.

[17]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[18]  W G Hol,et al.  Motion of the DNA-binding Domain with Respect to the Core of the Diphtheria Toxin Repressor (DtxR) Revealed in the Crystal Structures of Apo- and Holo-DtxR* , 1998, The Journal of Biological Chemistry.

[19]  S. Sainsbury,et al.  The Structure and Transcriptional Analysis of a Global Regulator from Neisseria meningitidis* , 2007, Journal of Biological Chemistry.

[20]  Kathrin Meindl,et al.  Exploiting tertiary structure through local folds for crystallographic phasing , 2013, Nature Methods.

[21]  R. Brennan,et al.  Prokaryotic transcription regulators: more than just the helix-turn-helix motif. , 2002, Current opinion in structural biology.

[22]  P. Rice,et al.  Structure of the LexA-DNA complex and implications for SOS box measurement , 2010, Nature.

[23]  O. Tsodikov,et al.  Structural and thermodynamic signatures of DNA recognition by Mycobacterium tuberculosis DnaA. , 2011, Journal of molecular biology.

[24]  Michael A. Crickmore,et al.  Functional Specificity of a Hox Protein Mediated by the Recognition of Minor Groove Structure , 2007, Cell.

[25]  C. Pabo,et al.  Selected peptide extension contacts hydrophobic patch on neighboring zinc finger and mediates dimerization on DNA , 2001, Nature Structural Biology.

[26]  H. Dyson,et al.  Structure of the Wilms tumor suppressor protein zinc finger domain bound to DNA. , 2007, Journal of molecular biology.

[27]  Sung Chul Ha,et al.  The structures of non-CG-repeat Z-DNAs co-crystallized with the Z-DNA-binding domain, hZαADAR1 , 2008, Nucleic acids research.

[28]  S. Burley The TATA box binding protein. , 1996, Current opinion in structural biology.

[29]  Liisa Holm,et al.  Dali server: conservation mapping in 3D , 2010, Nucleic Acids Res..

[30]  R. Eisenman The Myc/Max/Mad transcription factor network , 2006 .

[31]  Seth A. Darst,et al.  Crystal Structure of the Flagellar σ/Anti-σ Complex σ28/FlgM Reveals an Intact σ Factor in an Inactive Conformation , 2004 .

[32]  Ernest Fraenkel,et al.  Comparison of X-ray and NMR structures for the Antennapedia homeodomain–DNA complex , 1998, Nature Structural &Molecular Biology.

[33]  B. Stoddard,et al.  Homing endonucleases: from microbial genetic invaders to reagents for targeted DNA modification. , 2011, Structure.

[34]  U. Heinemann,et al.  The structure of the Klf4 DNA-binding domain links to self-renewal and macrophage differentiation , 2011, Cellular and Molecular Life Sciences.

[35]  H. Nam,et al.  Crystal structure of the human NKX2.5 homeodomain in complex with DNA target. , 2012, Biochemistry.

[36]  T. Shrivastava,et al.  Mechanistic insights from the crystal structures of a feast/famine regulatory protein from Mycobacterium tuberculosis H37Rv , 2007, Nucleic acids research.

[37]  C. Pabo,et al.  Constraints for zinc finger linker design as inferred from X-ray crystal structure of tandem Zif268-DNA complexes. , 2003, Journal of molecular biology.

[38]  G. Labesse,et al.  NAD Kinases Use Substrate-assisted Catalysis for Specific Recognition of NAD* , 2007, Journal of Biological Chemistry.

[39]  Randy J. Read,et al.  Phaser crystallographic software , 2007, Journal of applied crystallography.

[40]  V. Lamzin,et al.  Pattern-recognition-based detection of planar objects in three-dimensional electron-density maps. , 2008, Acta crystallographica. Section D, Biological crystallography.

[41]  R. Rose,et al.  Structural basis for induced fit mechanisms in DNA recognition by the Pdx1 homeodomain. , 2007, Biochemistry.

[42]  C. Pabo,et al.  Exploring the role of glutamine 50 in the homeodomain-DNA interface: crystal structure of engrailed (Gln50 --> ala) complex at 2.0 A. , 2000, Biochemistry.

[43]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[44]  D. Lilley The interaction of four-way DNA junctions with resolving enzymes. , 2010, Biochemical Society transactions.

[45]  Takashi Kumasaka,et al.  Mechanism of c-Myb–C/EBPβ Cooperation from Separated Sites on a Promoter , 2002, Cell.

[46]  J. Kuriyan,et al.  High resolution crystal structure of a paired (Pax) class cooperative homeodomain dimer on DNA , 1995, Cell.

[47]  Isabel Usón,et al.  Structure determination of the O-methyltransferase NovP using the 'free lunch algorithm' as implemented in SHELXE. , 2007, Acta crystallographica. Section D, Biological crystallography.

[48]  G. Waksman,et al.  Crystal structure of the homo-tetrameric DNA binding domain of Escherichia coli single-stranded DNA-binding protein determined by multiwavelength x-ray diffraction on the selenomethionyl protein at 2.9-A resolution. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Chao Xu,et al.  Crystal structure of the Cys2His2-type zinc finger domain of human DPF2. , 2011, Biochemical and biophysical research communications.

[50]  D. Case,et al.  Induced fit and "lock and key" recognition of 5S RNA by zinc fingers of transcription factor IIIA. , 2006, Journal of molecular biology.

[51]  A. Vershon,et al.  Crystal structure of the MATa1/MATalpha2 homeodomain heterodimer in complex with DNA containing an A-tract. , 1998, Nucleic acids research.

[52]  Sarah E. Ades,et al.  Engrailed (Gln50-->Lys) homeodomain-DNA complex at 1.9 A resolution: structural basis for enhanced affinity and altered specificity. , 1997, Structure.

[53]  D. Ringe,et al.  Structure of the metal-ion-activated diphtheria toxin repressor/ tox operator complex , 1998, Nature.

[54]  A. R. Srinivasan,et al.  The nucleic acid database. A comprehensive relational database of three-dimensional structures of nucleic acids. , 1992, Biophysical journal.

[55]  A. Wlodawer,et al.  Crystal structure of A. fulgidus Rio2 defines a new family of serine protein kinases. , 2004, Structure.

[56]  A. D. Clark,et al.  Inhibition of Bacterial RNA Polymerase by Streptolydigin: Stabilization of a Straight-Bridge-Helix Active-Center Conformation , 2005, Cell.

[57]  Randy J. Read,et al.  Dauter Iterative model building , structure refinement and density modification with the PHENIX AutoBuild wizard , 2007 .

[58]  Randy J. Read,et al.  Experiences with a new translation-function program , 1987 .

[59]  Benedetta Carrozzini,et al.  Phasing at resolution higher than the experimental resolution. , 2005, Acta crystallographica. Section D, Biological crystallography.

[60]  S. Ishijima,et al.  Interactions between the archaeal transcription repressor FL11 and its coregulators lysine and arginine , 2009, Proteins.

[61]  F. Young Biochemistry , 1955, The Indian Medical Gazette.

[62]  N. Pavletich,et al.  Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A , 1991, Science.

[63]  I. Smith,et al.  Characterization of an iron-dependent regulatory protein (IdeR) of Mycobacterium tuberculosis as a functional homolog of the diphtheria toxin repressor (DtxR) from Corynebacterium diphtheriae , 1995, Infection and immunity.

[64]  S K Burley,et al.  Cocrystal structure of YY1 bound to the adeno-associated virus P5 initiator. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[65]  G. Sheldrick,et al.  Practical structure solution with ARCIMBOLDO , 2012, Acta crystallographica. Section D, Biological crystallography.

[66]  W. Hol,et al.  Crystal structure of a cobalt-activated diphtheria toxin repressor-DNA complex reveals a metal-binding SH3-like domain. , 1999, Journal of molecular biology.

[67]  A. Sarai,et al.  Solution structure of a DNA-binding unit of Myb: a helix-turn-helix-related motif with conserved tryptophans forming a hydrophobic core. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[68]  G. Sheldrick,et al.  Crystallographic ab initio protein structure solution below atomic resolution , 2009, Nature Methods.

[69]  Catherine L. Worth,et al.  Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[70]  A. Rice,et al.  Crystal structures, metal activation, and DNA-binding properties of two-domain IdeR from Mycobacterium tuberculosis , 2007 .

[71]  W. Scott,et al.  Solving novel RNA structures using only secondary structural fragments. , 2010, Methods.

[72]  W. Hendrickson Determination of macromolecular structures from anomalous diffraction of synchrotron radiation. , 1991, Science.

[73]  R. Brennan,et al.  Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA , 2009, Nucleic acids research.

[74]  B. Matthews,et al.  Structure of the DNA-binding region of lac repressor inferred from its homology with cro repressor. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[75]  A. Wlodawer,et al.  Autophosphorylation of Archaeoglobus fulgidus Rio2 and crystal structures of its nucleotide–metal ion complexes , 2005, The FEBS journal.

[76]  Scot A Wolfe,et al.  Structure of a designed dimeric zinc finger protein bound to DNA. , 2003, Biochemistry.

[77]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[78]  Goran Neshich,et al.  PDB-Metrics: a web tool for exploring the PDB contents. , 2006, Genetics and molecular research : GMR.

[79]  A general method for phasing novel complex RNA crystal structures without heavy-atom derivatives , 2008, Acta crystallographica. Section D, Biological crystallography.

[80]  C. Pabo,et al.  Beyond the "recognition code": structures of two Cys2His2 zinc finger/TATA box complexes. , 2001, Structure.

[81]  Soojin Lee,et al.  Solution structure of Gfi-1 zinc domain bound to consensus DNA. , 2010, Journal of molecular biology.

[82]  M. Rosenfeld,et al.  Structure of Pit-1 POU domain bound to DNA as a dimer: unexpected arrangement and flexibility. , 1997, Genes & development.

[83]  B. Schneider,et al.  Building of RNA and DNA double helices into electron density. , 2008, Acta crystallographica. Section D, Biological crystallography.

[84]  Matthias Wilmanns,et al.  Crystal structure of a POU/HMG/DNA ternary complex suggests differential assembly of Oct4 and Sox2 on two enhancers. , 2003, Genes & development.

[85]  C. Wolberger,et al.  Crystal Structure of the MATa1/MATα2 Homeodomain Heterodimer Bound to DNA , 1995, Science.

[86]  D. Lambright,et al.  Structural basis for Rab GTPase recognition and endosome tethering by the C2H2 zinc finger of Early Endosomal Autoantigen 1 (EEA1) , 2010, Proceedings of the National Academy of Sciences.

[87]  Aneel K. Aggarwal,et al.  Structure of a DNA-bound Ultrabithorax–Extradenticle homeodomain complex , 1999, Nature.

[88]  Aaron Klug,et al.  Crystal structure of a zinc-finger–RNA complex reveals two modes of molecular recognition , 2003, Nature.

[89]  C. Pabo,et al.  Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. , 1993, Science.

[90]  J. Thornton,et al.  An overview of the structures of protein-DNA complexes , 2000, Genome Biology.

[91]  George M. Sheldrick,et al.  Experimental phasing with SHELXC/D/E: combining chain tracing with density modification , 2010, Acta crystallographica. Section D, Biological crystallography.

[92]  C. Pabo,et al.  High-resolution structures of variant Zif268-DNA complexes: implications for understanding zinc finger-DNA recognition. , 1998, Structure.

[93]  C. Pabo,et al.  Rearrangement of side-chains in a Zif268 mutant highlights the complexities of zinc finger-DNA recognition. , 2001, Journal of molecular biology.

[94]  Song Tan,et al.  Nucleosome structural studies. , 2011, Current opinion in structural biology.