Parametric review of existing regolith excavation techniques for lunar In Situ Resource Utilisation (ISRU) and recommendations for future excavation experiments

Abstract A high-level overview of current research in the area of lunar regolith excavation and handling for In Situ Resource Utilisation (ISRU) is presented. Thirteen processes are grouped into discrete and continuous excavators. A further differentiation is made between systems with and without connection to a mobility platform – referred to as complete and partial systems. For each group, a set of representative performance parameters has been identified and compared, while special characteristics or limitations are highlighted. The present work identifies a need for high detail research into the development of reliable and efficient excavation systems, due to the high importance of regolith excavation and handling to ISRU. A need for more standardised information and recording of specific data during supporting experimental studies is made apparent. In order to enable easier categorisation, comparison, and evaluation of future concepts, a set of key performance parameters requiring consideration during experimental campaigns is described and the importance of their inclusion underlined.

[1]  A. Scott Howe,et al.  ATHLETE as a mobile ISRU and regolith construction platform , 2016 .

[2]  Daniel S. Engstrøm,et al.  Mechanical behaviour of additively manufactured lunar regolith simulant components , 2018, Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications.

[3]  Xiangwu Zeng,et al.  Geotechnical Properties of JSC-1A Lunar Soil Simulant , 2010 .

[4]  Ramesh B. Malla,et al.  Earth and Space 2010 : Engineering, Science, Construction, and Operations in Challenging Environments , 2010 .

[5]  Robert P. Mueller,et al.  Regolith Advanced Surface Systems Operations Robot (RASSOR) , 2013, 2013 IEEE Aerospace Conference.

[6]  Allen Wilkinson,et al.  Digging and pushing lunar regolith: Classical soil mechanics and the forces needed for excavation and traction , 2007 .

[7]  Gerald B. Sanders,et al.  Comparison of Lunar and Mars In-Situ Resource Utilization for Future Robotic and Human Missions , 2011 .

[8]  R. Reedy,et al.  THE LUNAR REGOLITH , 2012 .

[9]  Brant C. White,et al.  Oxygen Production via Carbothermal Reduction of Lunar Regolith , 2009 .

[10]  K. Skonieczny Reduced Gravity Excavation Cutting Forces Considering Soil Accumulation , 2018, Earth and Space 2018.

[11]  M. Horányi,et al.  Lunar surface: Dust dynamics and regolith mechanics , 2007 .

[12]  W. E. Larson,et al.  Progress Made in Lunar In Situ Resource Utilization under NASA's Exploration Technology and Development Program , 2012 .

[13]  Kyle Johnson,et al.  A Basic Robotic Excavator (the Glenn Digger): Description, Design, and Initial Operation , 2016 .

[14]  Lawrence C. Greer,et al.  Excavation on the Moon: Regolith Collection for Oxygen Production and Outpost Site Preparation , 2008 .

[15]  A. Gebhardt,et al.  Process Parameters Development of Selective Laser Melting of Lunar Regolith for On‐Site Manufacturing Applications , 2015 .

[16]  Donald S. Burnett,et al.  Lunar surface processes , 1992 .

[17]  Kurt W. Leucht,et al.  Design of an Excavation Robot: Regolith Advanced Surface Systems Operations Robot (RASSOR) 2.0 , 2017 .

[18]  M. Zolensky,et al.  The Moon: An Archive of Small Body Migration in the Solar System , 2016, Earth, Moon, and Planets.

[19]  Greg S. Mungas,et al.  Pneumatic Excavator and Regolith Transport System for Lunar ISRU and Construction , 2008 .

[20]  R. H. King,et al.  Analytical models and laboratory measurements of the soil–tool interaction force to push a narrow tool through JSC-1A lunar simulant and Ottawa sand at different cutting depths , 2011 .

[21]  K. Zacny,et al.  PlanetVac Xodiac: Lander Foot Pad Integrated Planetary Sampling System , 2019, 2019 IEEE Aerospace Conference.

[22]  Paul J. van Susante,et al.  A Review of Extra-Terrestrial Mining Robot Concepts , 2012 .

[23]  A. Abdel-hadi,et al.  Flexible Mechanical Conveying of Regolith Under Micro-Gravity , 2014 .

[24]  Yasuyuki Yamada,et al.  Development of Both-Ends Supported Flexible Auger for Lunar Earthworm-Type Excavation Robot LEAVO , 2018, 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[25]  James Carpenter,et al.  Establishing lunar resource viability , 2016 .

[26]  Richard V. Morris,et al.  Oxygen extraction from lunar soils and pyroclastic glass , 1996 .

[27]  Bruce A. Campbell,et al.  Understanding the Lunar Surface and Space-Moon Interactions , 2006 .

[28]  C. Allen,et al.  JSC-1: A NEW LUNAR SOIL SIMULANT , 1994 .

[29]  John V. Gies The Effect of the Lunar Surface Environment upon Machinery , 1996 .

[30]  Zeng Zhao,et al.  The progress of extraterrestrial regolith-sampling robots , 2019, Nature Astronomy.

[31]  Kris Zacny,et al.  Application of Pneumatics in Delivering Samples to Instruments on Planetary Missions , 2019, 2019 IEEE Aerospace Conference.

[32]  R. P. Mueller,et al.  NASA Kennedy Space Center Swamp Works: Capabilities and Facilities , 2019 .

[33]  Joseph J. Kosmo,et al.  Historical synopses of desert RATS 1997–2010 and a preview of desert RATS 2011 , 2013 .

[34]  Charles S. Cockell,et al.  Astrobiology on the Moon , 2010 .

[35]  Kenji Nagaoka,et al.  Earth-worm typed Drilling robot for subsurface planetary exploration , 2007, 2007 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[36]  G. Visentin,et al.  The Prototype of Regolith Sampling Tool Dedicated to Low Gravity Planetary Bodies , 2019, Advances in Mechanism and Machine Science.

[37]  Greg S. Mungas,et al.  Novel Approaches to Drilling and Excavation on the Moon , 2009 .

[38]  S. Maurice,et al.  Fluxes of fast and epithermal neutrons from Lunar Prospector: evidence for water ice at the lunar poles. , 1998, Science.

[39]  Jaret Matthews,et al.  Development of the TriATHLETE Lunar Vehicle Prototype , 2010 .

[40]  Laurent Sibille,et al.  Swamp Works: A New Approach to Develop Space Mining and Resource Extraction Technologies at the National Aeronautics Space Administration (NASA) Kennedy Space Center (KSC) , 2015 .

[41]  Peter Radziszewski,et al.  Design issues and challenges in lunar/Martian mining applications , 2005 .

[42]  Yang Liu,et al.  Characterization of lunar dust and a synopsis of available lunar simulants , 2011 .

[43]  Robert H. King,et al.  Lightweight Bulldozer Attachment for Construction and Excavation on the Lunar Surface , 2009 .

[44]  Ian A. Crawford,et al.  Lunar resources , 2014, 1410.6865.

[45]  W. E. Larson,et al.  NASA In-Situ Resource Utilization (ISRU) Project: Development and Implementation , 2008 .

[46]  William Whittaker,et al.  Advantages of continuous excavation in lightweight planetary robotic operations , 2016, Int. J. Robotics Res..

[47]  A. Scott Howe,et al.  Outpost assembly using the ATHLETE mobility system , 2016, 2016 IEEE Aerospace Conference.

[48]  K. Zacny,et al.  Mechanical Properties of Icy Lunar Regolith: Application to ISRU on the Moon and Mars , 2018, Earth and Space 2018.

[49]  Robert H. King,et al.  A Prototype Bucket Wheel Excavator for the Moon, Mars and Phobos , 2004 .

[50]  D. Rickman,et al.  Preliminary Geological Findings on the BP-1 Simulant , 2010 .

[51]  Charles S. Cockell,et al.  Astrobiology—What Can We Do on the Moon? , 2010 .

[52]  Peter Radziszewski,et al.  Excavation System for Lunar Resource Management Based on Screw Conveying Auger Technology , 2011 .

[53]  Jeffrey J. Biesiadecki,et al.  Athlete: A cargo handling and manipulation robot for the moon , 2007, J. Field Robotics.

[54]  K. Zacny,et al.  Planetary Lego: Designing a Construction Block from a Regolith Derived Feedstock for In Situ Robotic Manufacturing , 2018, Earth and Space 2018.

[55]  L. L. Johnson,et al.  Measurement of force to excavate extraterrestrial regolith with a small bucket-wheel device , 2010 .

[56]  K. Zacny,et al.  Percussive digging systems for robotic exploration and excavation of planetary and lunar regolith , 2009, 2009 IEEE Aerospace conference.

[57]  P. D. Spudis,et al.  Using the resources of the Moon to create a permanent, cislunar space faring system , 2011 .

[58]  Paul E. Hintze,et al.  High-Temperature Microwave Dielectric Properties and Processing of JSC-1AC Lunar Simulant , 2013 .

[59]  William E. Larson,et al.  Progress Made in Lunar In Situ Resource Utilization under NASA's Exploration Technology and Development Program , 2012 .

[60]  Dale Boucher,et al.  Development and Testing Of An Autonomous Regolith Excavation and Delivery System , 2011 .

[61]  William Whittaker,et al.  Considering the Effects of Gravity When Developing and Field Testing Planetary Excavator Robots , 2015, FSR.

[62]  Ian A. Crawford,et al.  The production of oxygen and metal from lunar regolith , 2012 .

[63]  John C. Zarnecki,et al.  Astronomy from the Moon , 2008 .

[64]  Ross J. Friel,et al.  3D printing with moondust , 2016 .

[65]  Yang Gao,et al.  Investigation of the properties of icy lunar polar regolith simulants , 2016 .

[66]  Kris Zacny,et al.  Investigating the Efficiency of Pneumatic Transfer of JSC-1a Lunar Regolith Simulant in Vacuum and Lunar Gravity During Parabolic Flights , 2010 .

[67]  James Carpenter,et al.  Accessing, Drilling and Operating at the Lunar South Pole: Status of European Plans and Activities , 2015, ICRA 2015.

[68]  Terrence Fong,et al.  Field Testing of Utility Robots for Lunar Surface Operations , 2008 .

[70]  R. Jaumann,et al.  Back to the Moon: The scientific rationale for resuming lunar surface exploration , 2012 .

[71]  Peter Visscher,et al.  Design and Testing a Separable Tandem Articulating Rover , 2011 .

[72]  N. Prokop,et al.  Cratos: The Evolution of a Robotic Vehicle , 2013 .

[73]  R. Mueller,et al.  Performance of Regolith Feed Systems for Analog Field Tests of In-Situ Resource Utilization Oxygen Production Plants in Mauna Kea, Hawaii , 2010 .

[74]  Masami Nakagawa,et al.  The Lunar Dust Problem: From Liability to Asset , 2005 .

[75]  Richard Grieve,et al.  Lunar Surface Processes , 2023, Reviews in Mineralogy and Geochemistry.

[76]  J. Papike,et al.  The lunar regolith: Chemistry, mineralogy, and petrology , 1982 .

[77]  David W. Wurts,et al.  A Novel Approach to Planetary Regolith Collection: The Bucket Drum Soil Excavator , 2009 .

[78]  Christopher P. McKay,et al.  LunarVader: Development and Testing of Lunar Drill in Vacuum Chamber and in Lunar Analog Site of Antarctica , 2013 .

[79]  Peter D. Visscher,et al.  Lunar Rover Analogue Mission Deployments , 2014 .

[80]  S. Noble The Lunar Regolith , 2009 .

[81]  T. E. Frame,et al.  Piercing the Extraterrestrial Surface , 2015 .

[82]  Valentina Colla,et al.  Building components for an outpost on the Lunar soil by means of a novel 3D printing technology , 2014 .

[83]  Masatomi Nishio,et al.  Method for visualizing streamlines around hypersonic vehicles by using electrical discharge , 1992 .

[84]  L. Richter,et al.  Accessing and assessing lunar resources with PROSPECT , 2014 .

[85]  Xiangwu Zeng,et al.  Design and characterization of GRC-1: A soil for lunar terramechanics testing in Earth-ambient conditions , 2010 .

[86]  Karol Seweryn,et al.  The New Concept of a Sampling Device Driven by Rotary Hammering Actions , 2016, IEEE/ASME Transactions on Mechatronics.

[87]  H. Falcke,et al.  Science with a lunar low-frequency array: From the dark ages of the Universe to nearby exoplanets , 2009, 0902.0493.

[88]  L. Taylor,et al.  Lunar Simulants as Feedstocks for ISRU Processing: Mineralogy and Chemistry , 2006 .

[89]  R. Jaumann,et al.  A brief review of chemical and mineralogical resources on the Moon and likely initial In Situ Resource Utilization (ISRU) applications , 2012 .

[90]  Leonhard E. Bernold,et al.  Experimental Studies on Mechanics of Lunar Excavation , 1991 .

[91]  Stewart W. Johnson,et al.  Observatories on the moon , 1990 .

[92]  Paul G. Lucey,et al.  Direct evidence of surface exposed water ice in the lunar polar regions , 2018, Proceedings of the National Academy of Sciences.

[93]  Xiangwu Zeng,et al.  Geotechnical Properties of GRC-3 Lunar Simulant , 2013 .

[94]  M. Sperl,et al.  Solar 3D printing of lunar regolith , 2018, Acta Astronautica.

[95]  Andrew Petro,et al.  NASA's Centennial Challenges Contributions to ISRU , 2009 .

[96]  C. A. Pearse Photometry and polarimetry of the moon and their relationship to physical properties of the lunar surface , 1963 .

[97]  Kris Zacny,et al.  PlanetVac: Pneumatic regolith sampling system , 2014, 2014 IEEE Aerospace Conference.

[98]  D. Fray,et al.  The FFC-Cambridge Process for Titanium Metal Winning , 2010 .

[99]  Kenji Nagaoka,et al.  Experimental study on autonomous burrowing screw robot for subsurface exploration on the Moon , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[100]  D.A. Harrison,et al.  Next Generation Rover for Lunar Exploration , 2008, 2008 IEEE Aerospace Conference.

[101]  Paul J. van Susante,et al.  A Review of Lunar Regolith Excavation Robotic Device Prototypes , 2011 .

[102]  David Wettergreen,et al.  Design and field experimentation of a prototype Lunar prospector , 2010, Int. J. Robotics Res..

[103]  Peter Visscher,et al.  Continued Development of Juno Rover , 2012 .

[104]  Juan H. Agui,et al.  Granular Flow and Dynamics of Lunar Simulants in Excavating Implements , 2010 .

[105]  Josep M. Guerrero,et al.  Drilling systems for extraterrestrial subsurface exploration. , 2008, Astrobiology.

[106]  D. Rickman,et al.  Design and Specifications for the Highland Regolith Prototype Simulants NU-LHT-1M and -2M , 2010 .

[107]  Lawrence A. Taylor,et al.  Production of oxygen on the moon - Which processes are best and why , 1992 .

[108]  L. Taylor,et al.  Microwave Sintering of Lunar Soil: Properties, Theory, and Practice , 2005 .

[109]  Jack Wilson,et al.  Five-Step Parametric Prediction and Optimization Tool for Lunar Surface Systems Excavation Tasks , 2010 .

[110]  Stein Sture,et al.  Effectiveness of vibrating bulldozer and plow blades on draft force reduction , 1998 .

[111]  Sandra A. Wagner,et al.  The Apollo Experience Lessons Learned for Constellation Lunar Dust Management , 2013 .

[112]  K. Johnson,et al.  Development of Field Excavator with Embedded Force Measurement , 2012 .

[113]  A. Bandyopadhyay,et al.  First Demonstration on Direct Laser Fabrication of Lunar Regolith Parts , 2012 .

[114]  Michele Faragalli,et al.  The Artemis Jr. rover: Mobility platform for lunar ISRU mission simulation , 2015 .

[115]  James K. Mitchell,et al.  Mechanical properties of lunar soil - Density, porosity, cohesion, and angle of internal friction. , 1972 .

[116]  J. D. Smith,et al.  Reducing extra-terrestrial excavation forces with percussion , 2013, 2013 IEEE Aerospace Conference.