Bad behavior of Godunov mixed methods for strongly anisotropic advection-dispersion equations

We study the performance of Godunov mixed methods, which combine a mixed-hybrid finite element solver and a Godunov-like shock-capturing solver, for the numerical treatment of the advection-dispersion equation with strong anisotropic tensor coefficients. It turns out that a mesh locking phenomenon may cause ill-conditioning and reduce the accuracy of the numerical approximation especially on coarse meshes. This problem may be partially alleviated by substituting the mixed-hybrid finite element solver used in the discretization of the dispersive (diffusive) term with a linear Galerkin finite element solver, which does not display such a strong ill conditioning. To illustrate the different mechanisms that come into play, we investigate the spectral properties of such numerical discretizations when applied to a strongly anisotropic diffusive term on a small regular mesh. A thorough comparison of the stiffness matrix eigenvalues reveals that the accuracy loss of the Godunov mixed method is a structural feature of the mixed-hybrid method. In fact, the varied response of the two methods is due to the different way the smallest and largest eigenvalues of the dispersion (diffusion) tensor influence the diagonal and off-diagonal terms of the final stiffness matrix. One and two dimensional test cases support our findings.

[1]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids For Inhomogeneous, Anisotropic Media. Part II: Discussion And Numerical Results , 1998, SIAM J. Sci. Comput..

[2]  Jérôme Breil,et al.  A cell-centered diffusion scheme on two-dimensional unstructured meshes , 2007, J. Comput. Phys..

[3]  Enrico Bertolazzi,et al.  A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..

[4]  Yves Coudière,et al.  Convergence rate of a finite volume scheme for the linear convection-diffusion equation on locally refined meshes , 2000 .

[5]  Paola Pietra,et al.  Two-dimensional exponential fitting and applications to drift-diffusion models , 1989 .

[6]  M. Putti,et al.  Mixed-finite element and finite volume discretization for heavy brine simulations in groundwater , 2002 .

[7]  Luca Bergamaschi,et al.  Godunov Mixed Methods on Triangular Grids for Advection–Dispersion Equations , 2002 .

[8]  S. Osher,et al.  Triangle based adaptive stencils for the solution of hyperbolic conservation laws , 1992 .

[9]  Mario Putti,et al.  Accuracy of Galerkin finite elements for groundwater flow simulations in two and three‐dimensional triangulations , 2001 .

[10]  Annamaria Mazzia,et al.  High order Godunov mixed methods on tetrahedral meshes for density driven flow simulations in porous media , 2005 .

[11]  Gianmarco Manzini,et al.  A mixed finite element/finite volume approach for solving biodegradation transport in groundwater , 1998 .

[12]  E. Bertolazzi,et al.  A CELL-CENTERED SECOND-ORDER ACCURATE FINITE VOLUME METHOD FOR CONVECTION–DIFFUSION PROBLEMS ON UNSTRUCTURED MESHES , 2004 .

[13]  Ivar Aavatsmark,et al.  Discretization on Unstructured Grids for Inhomogeneous, Anisotropic Media. Part I: Derivation of the Methods , 1998, SIAM J. Sci. Comput..

[14]  P. Knabner,et al.  Numerical Methods for Elliptic and Parabolic Partial Differential Equations , 2003, Texts in Applied Mathematics.

[15]  A. Mazzia An analysis of monotonicity conditions in the mixed hybrid finite element method on unstructured triangulations , 2008 .

[16]  Giuseppe Gambolati,et al.  Nested Iterations for Symmetric Eigenproblems , 1995, SIAM J. Sci. Comput..

[17]  Enrico Bertolazzi,et al.  ON VERTEX RECONSTRUCTIONS FOR CELL-CENTERED FINITE VOLUME APPROXIMATIONS OF 2D ANISOTROPIC DIFFUSION PROBLEMS , 2007 .

[18]  Christophe Le Potier,et al.  Schéma volumes finis pour des opérateurs de diffusion fortement anisotropes sur des maillages non structurés , 2005 .

[19]  J. Bear Hydraulics of Groundwater , 1979 .

[20]  Yves Coudière,et al.  CONVERGENCE RATE OF A FINITE VOLUME SCHEME FOR A TWO DIMENSIONAL CONVECTION-DIFFUSION PROBLEM , 1999 .

[21]  Gianmarco Manzini,et al.  Mesh locking effects in the finite volume solution of 2-D anisotropic diffusion equations , 2007, J. Comput. Phys..

[22]  Enrico Bertolazzi,et al.  Limiting strategies for polynomial reconstructions in the finite volume approximation of the linear advection equation , 2004 .

[23]  C. Dawson Godunov-mixed methods for advective flow problems in one space dimension , 1991 .

[24]  G. Chavent,et al.  From mixed finite elements to finite volumes for elliptic PDEs in two and three dimensions , 2004 .

[25]  Luca Bergamaschi,et al.  On the Reliability of Numerical Solutions of Brine Transport in Groundwater: Analysis of Infiltration from a Salt Lake , 2001 .

[26]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[27]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[28]  C. Dawson Godunov-mixed methods for advection-diffusion equations in multidimensions , 1993 .

[29]  I. Babuska,et al.  On locking and robustness in the finite element method , 1992 .

[30]  Christophe Le Potier,et al.  Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .

[31]  I. Aavatsmark,et al.  An Introduction to Multipoint Flux Approximations for Quadrilateral Grids , 2002 .

[32]  Xu-Dong Liu,et al.  A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws , 1993 .

[33]  Luca Bergamaschi,et al.  A Time-Splitting Technique for the Advection-Dispersion Equation in Groundwater , 2000 .

[34]  Gianmarco Manzini,et al.  A fully coupled numerical model for two-phase flow with contaminant transport and biodegradation kinetics , 2001 .

[35]  Mario Putti,et al.  A Triangular Finite Volume Approach With High‐Resolution Upwind Terms for the Solution of Groundwater Transport Equations , 1990 .