Off-lattice simulation algorithms for athermal chain molecules under extreme confinement

Abstract A new algorithmic approach is presented for the generation and successive equilibration of polymer configurations under conditions of extreme confinement where the inter-wall distance, in at least one dimension, approaches the diameter of the spherical monomers. It significantly improves on the Monte Carlo (MC) protocol described in Karayiannis and Laso (2008) [126] . The algorithm is designed to generate highly confined packings of freely-jointed chains of hard spheres of uniform size. Spatial confinement is achieved by including flat, parallel impenetrable walls in one or more dimensions of the simulation box. The present MC scheme allows the systematic study of the effect of chain length, polydispersity, volume fraction, bond tolerance (gap), cell aspect ratio and level of confinement on the short- and long-range structure of polymer chains near and far from the confining planes. In the present study we focus on the efficiency of the MC protocol in generating, equilibrating, and configurationally decorrelating chain assemblies with average lengths ranging from N = 12 to 1000 monomers and at volume fractions from dilute up to the maximally random jammed (MRJ) state. Starting from cubic amorphous cells filled with polymer chains, the MC algorithm is able to reach quasi 2-d (plate-like) and 1-d (tube-like) states under conditions of extreme confinement and/or cell aspect ratio where the inter-wall distance approaches the diameter of beads forming the chains. A comparison with corresponding bulk packings shows the similarities and differences produced by extreme spatial confinement.

[1]  Nikos Ch. Karayiannis,et al.  Chapter 2 - Advanced Monte Carlo Methods for the atomistic simulation of polymers with a linear or a non-linear molecular architecture , 2006 .

[2]  T. Palberg,et al.  Unusual crystallization kinetics in a hard sphere colloid-polymer mixture. , 2009, Physical review letters.

[3]  R. Dickman,et al.  Local structure of model polymeric fluids: Hard‐sphere chains and the three‐dimensional fluctuating bond model , 1992 .

[4]  Ping Liu,et al.  Low-temperature, solution-processed, high-mobility polymer semiconductors for thin-film transistors. , 2007, Journal of the American Chemical Society.

[5]  M. Kröger,et al.  Random packing of model polymers: local structure, topological hindrance and universal scaling , 2009 .

[6]  P. Geissler,et al.  Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. , 2012, Nature materials.

[7]  James A. Forrest,et al.  Dynamics near Free Surfaces and the Glass Transition in Thin Polymer Films: A View to the Future , 2014 .

[8]  M. Dijkstra,et al.  Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. , 2013, Physical review letters.

[9]  D. Liveris,et al.  Molecular Simulations of Free and Graphite Capped Polyethylene Films: Estimation of the Interfacial Free Energies , 2017 .

[10]  D. Theodorou,et al.  A novel Monte Carlo scheme for the rapid equilibration of atomistic model polymer systems of precisely defined molecular architecture. , 2002, Physical review letters.

[11]  A. Markina,et al.  Effect of polymer chain stiffness on initial stages of crystallization of polyetherimides: Coarse‐grained computer simulation , 2017 .

[12]  M. Laso,et al.  Flexible chain molecules in the marginal and concentrated regimes: universal static scaling laws and cross-over predictions. , 2008, The Journal of chemical physics.

[13]  J. Rottler,et al.  Plastic Deformation Mechanisms of Semicrystalline and Amorphous Polymers. , 2015, ACS macro letters.

[14]  S. Sandler,et al.  An equation of state for the hard-sphere chain fluid: theory and Monte Carlo simulation , 1994 .

[15]  R. Hoy,et al.  Effect of chain stiffness on the competition between crystallization and glass-formation in model unentangled polymers. , 2014, The Journal of chemical physics.

[16]  A. Lavasanifar,et al.  Block Copolymer Stereoregularity and Its Impact on Polymeric Micellar Nanodrug Delivery. , 2017, Molecular pharmaceutics.

[17]  D. Frenkel,et al.  Novel scheme to compute chemical potentials of chain molecules on a lattice , 1991 .

[18]  O. Lame,et al.  Crystallization of finite-extensible nonlinear elastic Lennard-Jones coarse-grained polymers. , 2017, Physical review. E.

[19]  G. Odriozola,et al.  Colloid-polymer mixtures under slit confinement. , 2017, The Journal of chemical physics.

[20]  Nikos Ch. Karayiannis,et al.  Twinning of Polymer Crystals Suppressed by Entropy , 2014, Symmetry.

[21]  S. Torquato,et al.  Dense packings of the Platonic and Archimedean solids , 2009, Nature.

[22]  L. Oger,et al.  Geometrical characterization of hard-sphere systems. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  M. Alcoutlabi,et al.  Effects of confinement on material behaviour at the nanometre size scale , 2005 .

[24]  R. Hoy,et al.  Simple model for chain packing and crystallization of soft colloidal polymers. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  J. Torkelson,et al.  Molecular weight dependence of the intrinsic size effect on Tg in AAO template-supported polymer nanorods: A DSC study. , 2017, The Journal of chemical physics.

[26]  T. Sakaue,et al.  Semiflexible Polymer Confined in Closed Spaces , 2007, cond-mat/0703321.

[27]  Catherine C. Johnson,et al.  Combination moisture resistant and antireflection plasma polymerized thin films for optical coatings. , 1974, Applied optics.

[28]  M. Laso,et al.  Dense and nearly jammed random packings of freely jointed chains of tangent hard spheres. , 2008, Physical review letters.

[29]  D. Caprion,et al.  Computer investigation of long-range correlations and local order in random packings of spheres. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[30]  C. Roth,et al.  Local glass transition temperature Tg(z) of polystyrene next to different polymers: Hard vs. soft confinement. , 2017, The Journal of chemical physics.

[31]  Min‐Hui Li,et al.  Thermoresponsive self-assembled polymer colloids in water , 2013 .

[32]  C. Hall,et al.  Monte Carlo simulations and integral equation theory for microscopic correlations in polymeric fluids , 1992 .

[33]  Dominique Jeulin,et al.  Random-walk-based stochastic modeling of three-dimensional fiber systems. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  H. Ohta,et al.  Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors , 2004, Nature.

[35]  M. Fuchs,et al.  Structural properties of crystallizable polymer melts: Intrachain and interchain correlation functions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Nikos Ch. Karayiannis,et al.  Combined Molecular Algorithms for the Generation, Equilibration and Topological Analysis of Entangled Polymers: Methodology and Performance , 2009, International journal of molecular sciences.

[37]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[38]  T. Fisher,et al.  Athermal jamming of soft frictionless Platonic solids. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  Nikos Ch. Karayiannis,et al.  Atomistic Monte Carlo simulation of strictly monodisperse long polyethylene melts through a generalized chain bridging algorithm , 2002 .

[40]  Wiley,et al.  Numerical simulation of the dense random packing of a binary mixture of hard spheres: Amorphous metals. , 1987, Physical review. B, Condensed matter.

[41]  P. Chaikin,et al.  Specificity, flexibility and valence of DNA bonds guide emulsion architecture , 2013, 1303.0032.

[42]  D. Leporini,et al.  Bond disorder, frustration and polymorphism in the spontaneous crystallization of a polymer melt , 2016, 1811.06973.

[43]  J. Colmenero,et al.  The role of intramolecular barriers on the glass transition of polymers: Computer simulations versus mode coupling theory. , 2009, The Journal of chemical physics.

[44]  C. Reichhardt,et al.  Jamming in granular polymers. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Alexandros Chremos,et al.  Vitrification of Thin Polymer Films: From Linear Chain to Soft Colloid-like Behavior , 2015 .

[46]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[47]  Juan J de Pablo,et al.  Influence of confinement on the fragility of antiplasticized and pure polymer films. , 2006, Physical review letters.

[48]  J. Sommer,et al.  Frozen topology: entanglements control nucleation and crystallization in polymers. , 2014, Physical review letters.

[49]  L. Onsager THE EFFECTS OF SHAPE ON THE INTERACTION OF COLLOIDAL PARTICLES , 1949 .

[50]  Florian Müller-Plathe,et al.  Formation of Chain-Folded Structures in Supercooled Polymer Melts Examined by MD Simulations , 2002 .

[51]  F. Kremer,et al.  Glassy dynamics of polymethylphenylsiloxane in one- and two-dimensional nanometric confinement-A comparison. , 2017, The Journal of chemical physics.

[52]  E. Brown,et al.  Strain stiffening in random packings of entangled granular chains. , 2011, Physical review letters.

[53]  Continuum theory of polymer crystallization. , 2006, The Journal of chemical physics.

[54]  T. D. Lee,et al.  A review of thin film solar cell technologies and challenges , 2017 .

[55]  M. Dijkstra,et al.  Effect of bond length fluctuations on crystal nucleation of hard bead chains , 2012, 1204.5398.

[56]  M. Engel,et al.  Virial Coefficients and Equations of State for Hard Polyhedron Fluids. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[57]  E. M. Tory,et al.  Computer simulation of isotropic, homogeneous, dense random packing of equal spheres , 1981 .

[58]  Daan Frenkel,et al.  Configurational bias Monte Carlo: a new sampling scheme for flexible chains , 1992 .

[59]  M. Kröger,et al.  Molecular dynamics simulations of polymer crystallization under confinement: Entanglement effect , 2017 .

[60]  F. Stillinger,et al.  Improving the Density of Jammed Disordered Packings Using Ellipsoids , 2004, Science.

[61]  W. Knoll,et al.  Poly(γ-benzyl-l-glutamate) Peptides Confined to Nanoporous Alumina: Pore Diameter Dependence of Self-Assembly and Segmental Dynamics , 2009 .

[62]  M. Laso,et al.  Contact network in nearly jammed disordered packings of hard-sphere chains. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  Isostaticity and the solidification of semiflexible polymer melts. , 2017, Soft matter.

[64]  Degenerate quasicrystal of hard triangular bipyramids. , 2011, Physical review letters.

[65]  M. Laso,et al.  Jamming and crystallization in athermal polymer packings , 2013 .

[66]  H. Jaeger Celebrating Soft Matter's 10th Anniversary: toward jamming by design. , 2015, Soft matter.

[67]  Tobias A. Kampmann,et al.  Monte Carlo simulation of dense polymer melts using event chain algorithms. , 2015, The Journal of chemical physics.

[68]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[69]  D. Frenkel Perspective on “The effect of shape on the interaction of colloidal particles” , 2000 .

[70]  Swapan K. Ghosh,et al.  Structure of short polymers at interfaces: a combined simulation and theoretical study. , 2004, The Journal of chemical physics.

[71]  Fernando A Escobedo,et al.  Mesophase behaviour of polyhedral particles. , 2011, Nature materials.

[72]  Colloidal Analogues of Charged and Uncharged Polymer Chains with Tunable Stiffness** , 2012, Angewandte Chemie.

[73]  E Ben-Naim,et al.  Knots and random walks in vibrated granular chains. , 2001, Physical review letters.

[74]  J. Wittmer,et al.  Semiflexible Chains at Surfaces: Worm-Like Chains and beyond , 2016, Polymers.

[75]  H. Chan A hybrid helical structure of hard-sphere packing from sequential deposition , 2013, 1302.6405.

[76]  Juan J. de Pablo,et al.  Extended continuum configurational bias Monte Carlo methods for simulation of flexible molecules , 1995 .

[77]  Rintoul,et al.  Metastability and Crystallization in Hard-Sphere Systems. , 1996, Physical review letters.

[78]  M. Laso,et al.  Monte Carlo Scheme for Generation and Relaxation of Dense and Nearly Jammed Random Structures of Freely Jointed Hard-Sphere Chains , 2008 .

[79]  D. Frenkel,et al.  Thermodynamic stability of a smectic phase in a system of hard rods , 1988, Nature.

[80]  Juan J de Pablo,et al.  Local dynamic mechanical properties in model free-standing polymer thin films. , 2005, The Journal of chemical physics.

[81]  Juan J. de Pablo,et al.  Simulation of polyethylene above and below the melting point , 1992 .

[82]  M. Muthukumar,et al.  Langevin dynamics simulations of early-stage polymer nucleation and crystallization , 1998 .

[83]  S. Torquato,et al.  Confined disordered strictly jammed binary sphere packings. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[84]  K. Binder,et al.  Relaxation processes and glass transition of confined polymer melts: A molecular dynamics simulation of 1,4-polybutadiene between graphite walls. , 2017, The Journal of chemical physics.

[85]  J. Andzelm,et al.  A molecular simulation study of the glass transition of cross-linked poly(dicyclopentadiene) networks , 2015 .

[86]  Juan J. de Pablo,et al.  Estimation of the chemical potential of chain molecules by simulation , 1992 .

[87]  A. Yodh,et al.  Stimuli-Responsive Shape Switching of Polymer Colloids by Temperature-Sensitive Absorption of Solvent. , 2016, Angewandte Chemie.

[88]  R. Larson,et al.  A framework for multi-scale simulation of crystal growth in the presence of polymers. , 2017, Soft matter.

[89]  B. Alder,et al.  Phase Transition for a Hard Sphere System , 1957 .

[90]  Maj Thijs Michels,et al.  Density functional theory for the elastic moduli of a model polymeric solid , 2003 .

[91]  J. Dudowicz,et al.  The glass transition temperature of polymer melts. , 2005, The journal of physical chemistry. B.

[92]  M. Laso,et al.  Entropy-driven crystallization in dense systems of athermal chain molecules. , 2009, Physical review letters.

[93]  M. Kardar,et al.  Structure and dynamics of vibrated granular chains: comparison to equilibrium polymers. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  Thomas C. Hales,et al.  A Formulation of the Kepler Conjecture , 2006, Discret. Comput. Geom..

[95]  Shimshon Gottesfeld,et al.  Thin-film catalyst layers for polymer electrolyte fuel cell electrodes , 1992 .

[96]  Kenneth W. Desmond,et al.  Random close packing of disks and spheres in confined geometries. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[97]  Brendan O'Malley,et al.  Crystal nucleation in the hard sphere system. , 2003, Physical review letters.

[98]  E. Giannelis,et al.  Polymer-silicate nanocomposites : Model systems for confined polymers and polymer brushes , 1999 .

[99]  M. Laso,et al.  Structure, dimensions, and entanglement statistics of long linear polyethylene chains. , 2009, The journal of physical chemistry. B.

[100]  Sharon C. Glotzer,et al.  Shape and symmetry determine two-dimensional melting transitions of hard regular polygons , 2016, 1606.00687.

[101]  M. Kröger,et al.  Universal scaling, entanglements, and knots of model chain molecules. , 2008, Physical review letters.

[102]  M. Dijkstra,et al.  Inhomogeneous model colloid-polymer mixtures: adsorption at a hard wall. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[103]  F. Stillinger,et al.  Optimal packings of superballs. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[104]  M. Laso,et al.  Spontaneous Crystallization in Athermal Polymer Packings , 2012, International journal of molecular sciences.

[105]  Christopher K. Ober,et al.  Nanocomposite Materials for Optical Applications , 1997 .

[106]  J. McCoy,et al.  The glass transition temperature of thin films: A molecular dynamics study for a bead-spring model. , 2017, The Journal of chemical physics.

[107]  K. Winey,et al.  Entanglements and Dynamics of Polymer Melts near a SWCNT , 2012 .

[108]  Communication: A dynamical theory of homogeneous nucleation for colloids and macromolecules. , 2011, The Journal of chemical physics.

[109]  Yeng-Long Chen,et al.  Shifting the Isotropic–Nematic Transition in Very Strongly Confined Semiflexible Polymer Solutions , 2016 .

[110]  M. Laso,et al.  The structure of random packings of freely jointed chains of tangent hard spheres. , 2009, The Journal of chemical physics.

[111]  D. Weaire,et al.  Dense packings of spheres in cylinders: simulations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  Travis D. Boone,et al.  End-bridging Monte Carlo: A fast algorithm for atomistic simulation of condensed phases of long polymer chains , 1999 .

[113]  M. Laso,et al.  The role of bond tangency and bond gap in hard sphere crystallization of chains. , 2015, Soft matter.

[114]  Vlasis G. Mavrantzas,et al.  Large scale atomistic polymer simulations using Monte Carlo methods for parallel vector processors , 2002 .

[115]  Takashi Yamamoto Molecular Dynamics of Crystallization in a Helical Polymer Isotactic Polypropylene from the Oriented Amorphous State , 2014 .

[116]  A. Philipse,et al.  Random packings of spheres and spherocylinders simulated by mechanical contraction. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[117]  Andrea J Liu,et al.  Random packings of frictionless particles. , 2001, Physical review letters.

[118]  Kurt Binder,et al.  Phase transitions of a single polymer chain: A Wang-Landau simulation study. , 2009, The Journal of chemical physics.

[119]  Sharon C. Glotzer,et al.  A precise packing sequence for self-assembled convex structures , 2007, Proceedings of the National Academy of Sciences.

[120]  K. Binder,et al.  Molecular-dynamics simulations of the thermal glass transition in polymer melts: α-relaxation behavior , 1997, cond-mat/9710132.

[121]  A. Zelikin,et al.  Drug releasing polymer thin films: new era of surface-mediated drug delivery. , 2010, ACS nano.

[122]  M. Dijkstra,et al.  Effect of many-body interactions on the bulk and interfacial phase behavior of a model colloid-polymer mixture. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[123]  N. N. Medvedev,et al.  Polytetrahedral nature of the dense disordered packings of hard spheres. , 2007, Physical review letters.

[124]  D. Theodorou,et al.  Molecular Dynamics Study of Polyethylene under Extreme Confinement , 2016 .

[125]  Sharon C Glotzer,et al.  Simulation studies of the self-assembly of cone-shaped particles. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[126]  S. Torquato,et al.  Hard convex lens-shaped particles: Densest-known packings and phase behavior. , 2015, The Journal of chemical physics.

[127]  Random close packing revisited: ways to pack frictionless disks. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[128]  L. J. Albuquerque,et al.  Biodegradable nanoparticles as nanomedicines: are drug-loading content and release mechanism dictated by particle density? , 2017, Colloid and Polymer Science.

[129]  G. Rutledge,et al.  Plastic Deformation of Semicrystalline Polyethylene by X-ray Scattering: Comparison with Atomistic Simulations , 2013 .

[130]  H. Jaeger,et al.  The Packing of Granular Polymer Chains , 2009, Science.

[131]  Juan J. de Pablo,et al.  Simulation of phase equilibria for chain molecules , 1992 .

[132]  A. Baljon,et al.  Glass Transition Behavior of Polymer Films of Nanoscopic Dimensions , 2004, cond-mat/0408523.

[133]  C. Stafford,et al.  Elastic modulus of amorphous polymer thin films: relationship to the glass transition temperature. , 2009, ACS nano.

[134]  M. Zachariah,et al.  Packing density of rigid aggregates is independent of scale , 2014, Proceedings of the National Academy of Sciences.

[135]  Doros N. Theodorou,et al.  Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts , 1995 .

[136]  Christopher J. Ellison,et al.  The distribution of glass-transition temperatures in nanoscopically confined glass formers , 2003, Nature materials.

[137]  O. Bolland,et al.  SIMPLIFIED HARD-SPHERE AND HARD-SPHERE CHAIN EQUATIONS OF STATE FOR ENGINEERING APPLICATIONS , 2006 .

[138]  Maj Thijs Michels,et al.  Density-functional theory of the crystallization of hard polymeric chains , 2001 .

[139]  Phase behavior and structure of model colloid-polymer mixtures confined between two parallel planar walls. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[140]  T. Hales The Kepler conjecture , 1998, math/9811078.

[141]  M. Dijkstra,et al.  Two-stage melting induced by dislocations and grain boundaries in monolayers of hard spheres. , 2013, Soft matter.

[142]  J. Forrest,et al.  Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. , 2003, Physical review letters.

[143]  Thomas M Truskett,et al.  Is random close packing of spheres well defined? , 2000, Physical review letters.

[144]  Reinhard Schwödiauer,et al.  Stretch dependence of the electrical breakdown strength and dielectric constant of dielectric elastomers , 2013 .

[145]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[146]  Optical experiments on a crystallizing hard-sphere-polymer mixture at coexistence. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[147]  B. Saunders,et al.  Microgels: From responsive polymer colloids to biomaterials. , 2009, Advances in colloid and interface science.

[148]  P. Damasceno,et al.  Predictive Self-Assembly of Polyhedra into Complex Structures , 2012, Science.

[149]  S. Torquato,et al.  Organizing principles for dense packings of nonspherical hard particles: not all shapes are created equal. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[150]  Marjolein Dijkstra,et al.  Glassy dynamics of convex polyhedra. , 2014, The Journal of chemical physics.

[151]  G. Odriozola,et al.  Wall–particle interactions and depletion forces in narrow slits , 2015 .

[152]  M. Engel,et al.  Phase diagram of hard tetrahedra. , 2011, The Journal of chemical physics.

[153]  C. Abrams,et al.  Modeling of crystal nucleation and growth in athermal polymers: self-assembly of layered nano-morphologies , 2010 .

[154]  William G. Hoover,et al.  Melting Transition and Communal Entropy for Hard Spheres , 1968 .

[155]  M. González-Pinto,et al.  Dynamical properties of heterogeneous nucleation of parallel hard squares. , 2017, Soft matter.

[156]  F. Prinz,et al.  Solid oxide fuel cell with corrugated thin film electrolyte. , 2008, Nano letters.