SELFIES: a robust representation of semantically constrained graphs with an example application in chemistry

Department of Chemistry, University of Toronto, Canada. Department of Computer Science, University of Toronto, Canada. Vector Institute for Artificial Intelligence, Toronto, Canada. Department of Chemistry and Chemical Biology, Harvard University, Cambridge, USA. Institute of Nanotechnology, Karlsruhe Institute of Technology, Germany. Canadian Institute for Advanced Research (CIFAR) Senior Fellow, Toronto, Canada

[1]  Matt J. Kusner,et al.  Grammar Variational Autoencoder , 2017, ICML.

[2]  Mario Krenn,et al.  Experimental Greenberger–Horne–Zeilinger entanglement beyond qubits , 2018, Nature Photonics.

[3]  M. W. Shields An Introduction to Automata Theory , 1988 .

[4]  Koji Tsuda,et al.  Population-based de novo molecule generation, using grammatical evolution , 2018, 1804.02134.

[5]  Florian Häse,et al.  Chimera: Enabling Hierarchy Based Multi-Objective Optimization for Self-Driving Laboratories , 2018 .

[6]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[7]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[8]  Alán Aspuru-Guzik,et al.  Reinforced Adversarial Neural Computer for de Novo Molecular Design , 2018, J. Chem. Inf. Model..

[9]  Zois Boukouvalas,et al.  Deep learning for molecular generation and optimization - a review of the state of the art , 2019, Molecular Systems Design & Engineering.

[10]  Pavlo O. Dral,et al.  Quantum chemistry structures and properties of 134 kilo molecules , 2014, Scientific Data.

[11]  Alán Aspuru-Guzik,et al.  Design Principles and Top Non-Fullerene Acceptor Candidates for Organic Photovoltaics , 2017 .

[12]  Olexandr Isayev,et al.  Deep reinforcement learning for de novo drug design , 2017, Science Advances.

[13]  Stephen Dunn Smiles , 1932 .

[14]  R. Nichols,et al.  A hybrid machine learning algorithm for designing quantum experiments , 2018, Quantum Machine Intelligence.

[15]  Grzegorz Rozenberg,et al.  Handbook of Graph Grammars and Computing by Graph Transformations, Volume 1: Foundations , 1997 .

[16]  Geoffrey R. Hutchison,et al.  Rapid Computational Optimization of Molecular Properties using Genetic Algorithms: Searching Across Millions of Compounds for Organic Photovoltaic Materials , 2017, 1707.02949.

[17]  Cao Xiao,et al.  Constrained Generation of Semantically Valid Graphs via Regularizing Variational Autoencoders , 2018, NeurIPS.

[18]  Jan H. Jensen,et al.  A graph-based genetic algorithm and generative model/Monte Carlo tree search for the exploration of chemical space , 2018, Chemical science.

[19]  A. Zeilinger,et al.  Automated Search for new Quantum Experiments. , 2015, Physical review letters.

[20]  William J. Wiswesser,et al.  How the WLN began in 1949 and how it might be in 1999 , 1982, J. Chem. Inf. Comput. Sci..

[21]  Tim Weninger,et al.  Growing Graphs from Hyperedge Replacement Graph Grammars , 2016, CIKM.

[22]  Gordon M. Crippen,et al.  Prediction of Physicochemical Parameters by Atomic Contributions , 1999, J. Chem. Inf. Comput. Sci..

[23]  Alán Aspuru-Guzik,et al.  Objective-Reinforced Generative Adversarial Networks (ORGAN) for Sequence Generation Models , 2017, ArXiv.

[24]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[25]  Noel M. O'Boyle,et al.  DeepSMILES: An Adaptation of SMILES for Use in Machine-Learning of Chemical Structures , 2018 .

[26]  Mario Krenn,et al.  Active learning machine learns to create new quantum experiments , 2017, Proceedings of the National Academy of Sciences.

[27]  Renato Renner,et al.  Discovering physical concepts with neural networks , 2018, Physical review letters.

[28]  Ilya Sutskever,et al.  Language Models are Unsupervised Multitask Learners , 2019 .

[29]  Nikos Komodakis,et al.  GraphVAE: Towards Generation of Small Graphs Using Variational Autoencoders , 2018, ICANN.

[30]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[31]  Stefan Grimme,et al.  GFN2-xTB-An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. , 2018, Journal of Chemical Theory and Computation.

[32]  David N. Beratan,et al.  Strategy To Discover Diverse Optimal Molecules in the Small Molecule Universe , 2015, J. Chem. Inf. Model..

[33]  H. Weinfurter,et al.  Multiphoton entanglement and interferometry , 2003, 0805.2853.

[34]  Friedrich Rippmann,et al.  Interpretable Deep Learning in Drug Discovery , 2019, Explainable AI.

[35]  Stephen R. Heller,et al.  InChI - the worldwide chemical structure identifier standard , 2013, Journal of Cheminformatics.

[36]  David Weininger,et al.  SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules , 1988, J. Chem. Inf. Comput. Sci..

[37]  H. Dietz,et al.  Dynamic DNA devices and assemblies formed by shape-complementary, non–base pairing 3D components , 2015, Science.

[38]  Robert D. Clark,et al.  SYBYL Line Notation (SLN): A Single Notation To Represent Chemical Structures, Queries, Reactions, and Virtual Libraries , 2008, J. Chem. Inf. Model..

[39]  Alán Aspuru-Guzik,et al.  Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules , 2016, ACS central science.

[40]  Hendrik Dietz,et al.  Biotechnological mass production of DNA origami , 2017, Nature.

[41]  Alexandre Tkatchenko,et al.  Quantum-chemical insights from deep tensor neural networks , 2016, Nature Communications.

[42]  Alaa A. Kharbouch,et al.  Three models for the description of language , 1956, IRE Trans. Inf. Theory.

[43]  Regina Barzilay,et al.  Junction Tree Variational Autoencoder for Molecular Graph Generation , 2018, ICML.

[44]  Jeff Donahue,et al.  Large Scale GAN Training for High Fidelity Natural Image Synthesis , 2018, ICLR.

[45]  Roger B. Grosse,et al.  Isolating Sources of Disentanglement in Variational Autoencoders , 2018, NeurIPS.

[46]  Razvan Pascanu,et al.  Learning Deep Generative Models of Graphs , 2018, ICLR 2018.

[47]  Alán Aspuru-Guzik,et al.  Optimizing distributions over molecular space. An Objective-Reinforced Generative Adversarial Network for Inverse-design Chemistry (ORGANIC) , 2017 .

[48]  Niloy Ganguly,et al.  NeVAE: A Deep Generative Model for Molecular Graphs , 2018, AAAI.

[49]  Steven Skiena,et al.  Syntax-Directed Variational Autoencoder for Structured Data , 2018, ICLR.

[50]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[51]  Jean-Louis Reymond,et al.  Enumeration of 166 Billion Organic Small Molecules in the Chemical Universe Database GDB-17 , 2012, J. Chem. Inf. Model..

[52]  Qi Liu,et al.  Constrained Graph Variational Autoencoders for Molecule Design , 2018, NeurIPS.