Shapes of growing droplets—A model of escape from a metastable phase

Nucleation from a metastable state is studied for an Ising ferromagnet with nearest and next nearest neighbor interaction and at very low temperatures. The typical escape path is shown to follow a sequence of configurations with a growing droplet of stable phase whose shape is determined by dynamical considerations and differs significantly from the equilibrium shape corresponding to the instantaneous volume.

[1]  G. Wulff,et al.  XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .

[2]  W. K. Burton,et al.  The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[3]  Conyers Herring,et al.  Some Theorems on the Free Energies of Crystal Surfaces , 1951 .

[4]  C. Rottman,et al.  Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions , 1984 .

[5]  Antonio Galves,et al.  Metastable behavior of stochastic dynamics: A pathwise approach , 1984 .

[6]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[7]  H. Beijeren,et al.  The Roughening Transition , 1987 .

[8]  Fabio Martinelli,et al.  Metastability and exponential approach to equilibrium for low-temperature stochastic Ising models , 1990 .

[9]  Roberto H. Schonmann,et al.  Critical droplets and metastability for a Glauber dynamics at very low temperatures , 1991 .

[10]  Roberto H. Schonmann,et al.  The pattern of escape from metastability of a stochastic ising model , 1992 .

[11]  R. L. Dobrushin,et al.  Wulff Construction: A Global Shape from Local Interaction , 1992 .

[12]  R. Schonmann,et al.  Behavior of droplets for a class of Glauber dynamics at very low temperature , 1992 .

[13]  R. Kotecḱy,et al.  Droplet dynamics for asymmetric Ising model , 1993 .

[14]  R. Schonmann Theorems and Conjectures on the Droplet-Driven Relaxation of Stochastic Ising Models , 1994 .

[15]  R. Schonmann Slow droplet-driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region , 1994 .