Shapes of growing droplets—A model of escape from a metastable phase
暂无分享,去创建一个
[1] G. Wulff,et al. XXV. Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krystallflächen , 1901 .
[2] W. K. Burton,et al. The growth of crystals and the equilibrium structure of their surfaces , 1951, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[3] Conyers Herring,et al. Some Theorems on the Free Energies of Crystal Surfaces , 1951 .
[4] C. Rottman,et al. Statistical mechanics of equilibrium crystal shapes: Interfacial phase diagrams and phase transitions , 1984 .
[5] Antonio Galves,et al. Metastable behavior of stochastic dynamics: A pathwise approach , 1984 .
[6] M. Freidlin,et al. Random Perturbations of Dynamical Systems , 1984 .
[7] H. Beijeren,et al. The Roughening Transition , 1987 .
[8] Fabio Martinelli,et al. Metastability and exponential approach to equilibrium for low-temperature stochastic Ising models , 1990 .
[9] Roberto H. Schonmann,et al. Critical droplets and metastability for a Glauber dynamics at very low temperatures , 1991 .
[10] Roberto H. Schonmann,et al. The pattern of escape from metastability of a stochastic ising model , 1992 .
[11] R. L. Dobrushin,et al. Wulff Construction: A Global Shape from Local Interaction , 1992 .
[12] R. Schonmann,et al. Behavior of droplets for a class of Glauber dynamics at very low temperature , 1992 .
[13] R. Kotecḱy,et al. Droplet dynamics for asymmetric Ising model , 1993 .
[14] R. Schonmann. Theorems and Conjectures on the Droplet-Driven Relaxation of Stochastic Ising Models , 1994 .
[15] R. Schonmann. Slow droplet-driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region , 1994 .