A retrospective view on: "Testing scattering matrices: A compendium of recipes"

The elements of matrices relevant to polarized light transfer often obey certain equalities and inequalities that can be used for testing purposes. As an introduction to the reprint of our paper (Hovenier and van der Mee, 1996 [7]) we first present the case history and significance of this paper and then discuss some later developments.

[1]  Petr Chýlekt,et al.  Light scattering by small particles in an absorbing medium , 1977 .

[2]  Hovenier Jw Structure of a general pure Mueller matrix. , 1994 .

[3]  M. van der Mee,et al.  Transfer of Polarized Light in Planetary Atmospheres: Basic Concepts and Practical Methods , 2005 .

[4]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[5]  Sergey N. Savenkov,et al.  Jones and Mueller matrices: structure, symmetry relations and information content , 2009 .

[6]  D. M. Stam,et al.  Scattering matrices and expansion coefficients of martian analogue palagonite particles , 2008, 0809.2632.

[7]  Joop W. Hovenier,et al.  Conditions for the elements of the scattering matrix , 1986 .

[8]  Cornelis V. M. van der Mee,et al.  Scattering of polarized light: Properties of the elements of the phase matrix , 1988 .

[9]  J. Hovenier,et al.  Structure of matrices transforming Stokes parameters , 1992 .

[10]  J. Hovenier,et al.  Testing scattering matrices: A compendium of recipes , 1996 .

[11]  J. Hovenier,et al.  Depolarization of light backscattered by randomly oriented nonspherical particles. , 1995, Optics letters.

[12]  M. Hartmann,et al.  Light scattering by small particles. Von H. C. VANDE HULST. New York: Dover Publications, Inc. 1981. Paperback, 470 S., 103 Abb. und 46 Tab., US $ 7.50 , 1984 .

[13]  J. Hovenier,et al.  Symmetry relations for forward and backward scattering by randomly oriented particles , 1998 .

[14]  Joop W. Hovenier,et al.  Basic relationships for matrices describing scattering by small particles , 2000 .

[15]  J. Hovenier,et al.  Structure of a general pure Mueller matrix. , 1994, Applied optics.