On the curvature of piecewise flat spaces
暂无分享,去创建一个
[1] M. Roček,et al. The quantization of Regge calculus , 1984 .
[2] Jeff Cheeger,et al. Spectral geometry of singular Riemannian spaces , 1983 .
[3] N. Warner. The application of Regge calculus to quantum gravity and quantum field theory in a curved background , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[4] D. Weingarten. Euclidean quantum gravity on a lattice , 1982 .
[5] S. M. Lewis. Two cosmological solutions of Regge calculus , 1982 .
[6] M. Roček,et al. Quantum regge calculus , 1981 .
[7] B. Hasslacher,et al. Spin networks are simplicial quantum gravity , 1981 .
[8] R. Sorkin,et al. Boundary terms in the action for the Regge calculus , 1981 .
[9] G. Ellis,et al. Regge calculus and observations. I. Formalism and applications to radial motion and circular orbits , 1981 .
[10] S. Hawking,et al. General Relativity; an Einstein Centenary Survey , 1979 .
[11] Stratified general position , 1978 .
[12] L. Santaló. Integral geometry and geometric probability , 1976 .
[13] Rafael D. Sorkin,et al. The electromagnetic field on a simplicial net , 1975 .
[14] H. Donnelly. Heat equation and the volume of tubes , 1975 .
[15] P Mcmullen,et al. Non-linear angle-sum relations for polyhedral cones and polytopes , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.
[16] R. Sorkin. Time-evolution problem in regge calculus , 1975 .
[17] P. Gilkey. The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary , 1975 .
[18] J. Cheeger,et al. Comparison theorems in Riemannian geometry , 1975 .
[19] Ruth M. Williams,et al. Regge-calculus model for the Tolman universe , 1974 .
[20] Ruth M. Williams,et al. Dynamics of the friedmann universe using regge calculus , 1973 .
[21] Ruth M. Williams,et al. APPLICATION OF REGGE CALCULUS TO THE AXIALLY SYMMETRIC INITIAL-VALUE PROBLEM IN GENERAL RELATIVITY. , 1972 .
[22] R. Sulanke,et al. Differentialgeometrie und Faserbündel , 1972 .
[23] C. Wong. Application of Regge Calculus to the Schwarzschild and Reissner‐Nordstro/m Geometries at the Moment of Time Symmetry , 1971 .
[24] Igal Talmi,et al. Spectroscopic and Group Theoretical Methods in Physics , 1970 .
[25] J. Munkres,et al. Elementary Differential Topology. , 1967 .
[26] T. Banchoff. CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .
[27] Shiing-Shen Chern,et al. On the Kinematic Formula in Integral Geometry , 1966 .
[28] B. Dewitt,et al. Relativity, Groups, and Topology , 1964 .
[29] T. Regge. General relativity without coordinates , 1961 .
[30] H. Whitney. Geometric Integration Theory , 1957 .
[31] C. B. Allendoerfer,et al. The Gauss-Bonnet theorem for Riemannian polyhedra , 1943 .
[32] H. Freudenthal. Simplizialzerlegungen von Beschrankter Flachheit , 1942 .
[33] H. Weyl. On the Volume of Tubes , 1939 .
[34] Gesammelte Abhandlungen , 1906, Nature.
[35] L. Schläfli. Ueber die Entwickelbarkeit des Quotienten zweier bestimmter Integrale von der Form ∫dxdy...dz. , 1867 .