On the convergence of augmented Lagrangian methods for nonlinear semidefinite programming

In this paper, we present new convergence properties of the augmented Lagrangian method for nonlinear semidefinite programs (NSDP). Convergence to the approximately global solutions and optimal values of NSDP is first established for a basic augmented Lagrangian scheme under mild conditions, without requiring the boundedness condition of the multipliers. We then propose four modified augmented Lagrangian methods for NSDP based on different algorithmic strategies. We show that the same convergence of the proposed methods can be ensured under weaker conditions.

[1]  Jie Sun,et al.  Properties of the Augmented Lagrangian in Nonlinear Semidefinite Optimization , 2006 .

[2]  H. X. Wu,et al.  The global convergence of augmented Lagrangian methods based on NCP function in constrained nonconvex optimization , 2009, Appl. Math. Comput..

[3]  Pierre Apkarian,et al.  Robust Control via Sequential Semidefinite Programming , 2002, SIAM J. Control. Optim..

[4]  Defeng Sun,et al.  The Strong Second-Order Sufficient Condition and Constraint Nondegeneracy in Nonlinear Semidefinite Programming and Their Implications , 2006, Math. Oper. Res..

[5]  Defeng Sun,et al.  The rate of convergence of the augmented Lagrangian method for nonlinear semidefinite programming , 2008, Math. Program..

[6]  Alexander Shapiro,et al.  Some Properties of the Augmented Lagrangian in Cone Constrained Optimization , 2004, Math. Oper. Res..

[7]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[8]  G. Papavassilopoulos,et al.  Biaffine matrix inequality properties and computational methods , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[9]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[10]  Leonid Mosheyev,et al.  Penalty/Barrier multiplier algorthm for semidefinit programming , 2000 .

[11]  Gianni Di Pillo,et al.  An Augmented Lagrangian Function with Improved Exactness Properties , 2002, SIAM J. Optim..

[12]  Vladimir A. Yakubovich,et al.  Linear Matrix Inequalities in System and Control Theory (S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan) , 1995, SIAM Rev..

[13]  Anders Forsgren,et al.  Optimality conditions for nonconvex semidefinite programming , 2000, Math. Program..

[14]  Héctor Ramírez Cabrera,et al.  A Global Algorithm for Nonlinear Semidefinite Programming , 2004, SIAM J. Optim..

[15]  José Mario Martínez,et al.  On Augmented Lagrangian Methods with General Lower-Level Constraints , 2007, SIAM J. Optim..

[16]  Christian Kanzow,et al.  Semidefinite Programs: New Search Directions, Smoothing-Type Methods, and Numerical Results , 2002, SIAM J. Optim..

[17]  Hezhi Luo,et al.  Convergence properties of augmented Lagrangian methods for constrained global optimization , 2008, Optim. Methods Softw..

[18]  Xiaoling Sun,et al.  On the convergence properties of modified augmented Lagrangian methods for mathematical programming with complementarity constraints , 2010, J. Glob. Optim..

[19]  José Mario Martínez,et al.  Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems , 2005, Comput. Optim. Appl..

[20]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[21]  José Mario Martínez,et al.  Global minimization using an Augmented Lagrangian method with variable lower-level constraints , 2010, Math. Program..

[22]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[23]  P. Pardalos,et al.  Novel Approaches to Hard Discrete Optimization , 2003 .

[24]  Duan Li,et al.  On the Convergence of Augmented Lagrangian Methods for Constrained Global Optimization , 2007, SIAM J. Optim..

[25]  Hayato Waki,et al.  How to generate weakly infeasible semidefinite programs via Lasserre’s relaxations for polynomial optimization , 2011, Optimization Letters.

[26]  B. Fares,et al.  An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory , 2001 .

[27]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[28]  Kok Lay Teo,et al.  Approximate Augmented Lagrangian Functions and Nonlinear Semidefinite Programs , 2006 .

[29]  A. Nemirovski,et al.  Optimal Design of Trusses Under a Nonconvex Global Buckling Constraint , 2000 .

[30]  G. Mastroeni,et al.  Separation Approach for Augmented Lagrangians in Constrained Nonconvex Optimization , 2010 .

[31]  R. Tyrrell Rockafellar,et al.  Lagrange Multipliers and Optimality , 1993, SIAM Rev..

[32]  J. Frédéric Bonnans,et al.  Perturbation Analysis of Optimization Problems , 2000, Springer Series in Operations Research.

[33]  Defeng Sun,et al.  Constraint Nondegeneracy, Strong Regularity, and Nonsingularity in Semidefinite Programming , 2008, SIAM J. Optim..

[34]  F. Jarre An Interior Method for Nonconvex Semidefinite Programs , 2000 .

[35]  Kok Lay Teo,et al.  Augmented Lagrangian and Nonlinear Semidefinite Programs , 2005 .

[36]  Xiaodong Ding,et al.  Global convergence of modified augmented Lagrangian methods for nonlinear semidefinite programming , 2013, Computational Optimization and Applications.

[37]  Panos M. Pardalos,et al.  Topics in Semidefinite and Interior-Point Methods , 1998 .

[38]  Kok Lay Teo,et al.  Lower-Order Penalization Approach to Nonlinear Semidefinite Programming , 2007 .

[39]  José Mario Martínez,et al.  Augmented Lagrangian methods under the constant positive linear dependence constraint qualification , 2007, Math. Program..

[40]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[41]  Duan Li,et al.  Unified theory of augmented Lagrangian methods for constrained global optimization , 2009, J. Glob. Optim..

[42]  U. Ringertz EIGENVALUES IN OPTIMUM STRUCTURAL DESIGN , 1997 .

[43]  H. Z. Luo,et al.  A note on the existence of saddle points of p-th power Lagrangian for constrained nonconvex optimization , 2012 .

[44]  Alexander Shapiro,et al.  First and second order analysis of nonlinear semidefinite programs , 1997, Math. Program..

[45]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[46]  Jean B. Lasserre,et al.  On representations of the feasible set in convex optimization , 2009, Optim. Lett..

[47]  Xiaoxi Sun,et al.  Convergence Properties of Modified and Partially-Augmented Lagrangian Methods for Mathematical Programs with Complementarity Constraints , 2010 .

[48]  Camilo Ortiz,et al.  Semidefinite relaxations of dynamical programs under discrete constraints , 2010, Optim. Lett..

[49]  H. X. Wu,et al.  Saddle points of general augmented Lagrangians for constrained nonconvex optimization , 2012, J. Glob. Optim..

[50]  Dominikus Noll,et al.  Local convergence of an augmented Lagrangian method for matrix inequality constrained programming , 2007, Optim. Methods Softw..

[51]  Pierre Apkarian,et al.  Partially Augmented Lagrangian Method for Matrix Inequality Constraints , 2004, SIAM J. Optim..

[52]  Houduo Qi,et al.  Local Duality of Nonlinear Semidefinite Programming , 2009, Math. Oper. Res..