Temperature- and size-dependent characteristics in ultrathin inorganic light-emitting diodes assembled by transfer printing

Favorable temperature- and size-dependent device characteristics in mechanically flexible, thin (∼6.45 μm thick), microscale inorganic InGaN/GaN-based light-emitting diodes enable their use as highly efficient, robust devices that are capable of integration on diverse classes of unconventional substrates, including sheets of plastic. Finite element analysis and systematic studies of the operational properties establish important thermal, electrical, and optical considerations for this type of device.

[1]  Thermal effect on the electroluminescence of InGaN/GaN multiquantum-well light-emitting devices , 2012 .

[2]  Hadis Morkoç,et al.  On the efficiency droop in InGaN multiple quantum well blue light emitting diodes and its reduction with p-doped quantum well barriers , 2008 .

[3]  Hyunsoo Kim,et al.  Electrical and optical characteristics of GaN-based light-emitting diodes fabricated with emission wavelengths of 429-467 nm , 2012 .

[4]  S. Wereley,et al.  soft matter , 2019, Science.

[5]  Xiuhan Li,et al.  Efficiency droop behaviors of the blue LEDs on patterned sapphire substrate , 2011 .

[6]  John A. Rogers,et al.  Thermal properties of microscale inorganic light-emitting diodes in a pulsed operation , 2013 .

[7]  A. Abdel-azim Fundamentals of Heat and Mass Transfer , 2011 .

[8]  H. Ünlü A thermodynamic model for determining pressure and temperature effects on the bandgap energies and other properties of some semiconductors , 1992 .

[9]  Yonggang Huang,et al.  Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. , 2010, Nature materials.

[10]  Y. D. Jhou,et al.  Nitride-based light emitting diode and photodetector dual function devices with InGaN/GaN multiple quantum well structures , 2004 .

[11]  Audrey M. Bowen,et al.  Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication , 2012, Advanced materials.

[12]  John A. Rogers,et al.  Microscale Inorganic Light-Emitting Diodes on Flexible and Stretchable Substrates , 2012, IEEE Photonics Journal.

[13]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[14]  H. J. Hagger,et al.  Solid State Electronics , 1960, Nature.

[15]  D. Erickson,et al.  Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. , 2003, Lab on a chip.

[16]  John A Rogers,et al.  Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting , 2011, Proceedings of the National Academy of Sciences.

[17]  Yei Hwan Jung,et al.  Injectable, Cellular-Scale Optoelectronics with Applications for Wireless Optogenetics , 2013, Science.

[18]  T. Someya,et al.  Stretchable organic integrated circuits for large-area electronic skin surfaces , 2012 .

[19]  Heung Cho Ko,et al.  Transfer of GaN LEDs From Sapphire to Flexible Substrates by Laser Lift-Off and Contact Printing , 2012, IEEE Photonics Technology Letters.

[20]  Rui Li,et al.  Thermo-mechanical modeling of laser-driven non-contact transfer printing: two-dimensional analysis , 2012 .

[21]  Erdan Gu,et al.  Size-dependent light output, spectral shift, and self-heating of 400 nm InGaN light-emitting diodes , 2010 .

[22]  Jin-seong Park,et al.  Thin film encapsulation for flexible AM-OLED: a review , 2011 .

[23]  John A Rogers,et al.  Materials and designs for wirelessly powered implantable light-emitting systems. , 2012, Small.

[24]  Hung Cao,et al.  An Integrated μLED Optrode for Optogenetic Stimulation and Electrical Recording , 2013, IEEE Transactions on Biomedical Engineering.

[25]  Benjamin C. K. Tee,et al.  Flexible polymer transistors with high pressure sensitivity for application in electronic skin and health monitoring , 2013, Nature Communications.

[26]  Takao Someya,et al.  Ultrathin, highly flexible and stretchable PLEDs , 2013, Nature Photonics.

[27]  Sung Hyun Kim,et al.  GaN-based light-emitting diodes on origami substrates , 2012 .

[28]  M. Shur,et al.  Properties of advanced semiconductor materials : GaN, AlN, InN, BN, SiC, SiGe , 2001 .

[29]  John A Rogers,et al.  Fabrication and application of flexible, multimodal light-emitting devices for wireless optogenetics , 2013, Nature Protocols.

[30]  Yonggang Huang,et al.  Printed Assemblies of Inorganic Light-Emitting Diodes for Deformable and Semitransparent Displays , 2009, Science.

[31]  Y. Huang,et al.  A thermal analysis of the operation of microscale, inorganic light-emitting diodes , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[32]  John A Rogers,et al.  High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. , 2012, Small.

[33]  R. Jain,et al.  Photodynamic therapy for cancer , 2003, Nature Reviews Cancer.