The Tevatron at the frontier of dark matter direct detection

Direct detection of dark matter (DM) requires an interaction of dark matter particles with nucleons. The same interaction can lead to dark matter pair production at a hadron collider, and with the addition of initial state radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron can thus place limits on DM direct detection rates. We study these bounds both in the case where there is a contact interaction between DM and the standard model and where there is a mediator kinematically accessible at the Tevatron. We find that in many cases the Tevatron provides the current best limit, particularly for light dark matter, below ∼5 GeV, a and for spin dependent interactions. Non-standard dark matter candidates are also constrained. The introduction of a light mediator significantly weakens the collider bound. A direct detection discovery that is in apparent conflict with mono-jet limits will thus point to a new light state coupling the standard model to the dark sector. Mono-jet searches with more luminosity and including the spectrum shape in the analysis can improve the constraints on DM-nucleon scattering cross section.

[1]  R. Lang,et al.  Peaked signals from dark matter velocity structures in direct detection experiments , 2010, 1003.3664.

[2]  Alexander Pukhov,et al.  CalcHEP 2.3: MSSM, structure functions, event generation, batchs, and generation of matrix elements for other packages , 2004, hep-ph/0412191.

[3]  Edward W. Kolb,et al.  Maverick dark matter at colliders , 2010, 1002.4137.

[4]  B. Beltrán,et al.  Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO , 2010 .

[5]  F. Petriello,et al.  DAMA and WIMP dark matter , 2008, 0806.3989.

[6]  Univ. Jing Gangshan,et al.  First results from DAMA/LIBRA and the combined results with DAMA/NaI , 2008, 0804.2741.

[7]  M. Szydagis,et al.  Spin-Dependent WIMP Limits from a Bubble Chamber , 2008, Science.

[8]  Hai-Bo Yu,et al.  Constraints on Light Majorana dark Matter from Colliders , 2010, 1005.1286.

[9]  A. Pierce,et al.  Using the energy spectrum measured by DAMA/LIBRA to probe light dark matter , 2008, 0808.0196.

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  W. Keung,et al.  Spin dependence of dark matter scattering , 2008, 0806.1962.

[12]  A. Semenov,et al.  Dark matter direct detection rate in a generic model with micrOMEGAs_2.2 , 2008, Comput. Phys. Commun..

[13]  Hai-Yang Cheng Low-energy Interactions of Scalar and Pseudoscalar Higgs Bosons With Baryons , 1989 .

[14]  Dark matter at colliders: A Model independent approach , 2004, hep-ph/0403004.

[15]  D. Hooper TASI 2008 Lectures on Dark Matter , 2009, 0901.4090.

[16]  N. Weiner,et al.  Inelastic dark matter , 2001, hep-ph/0101138.

[17]  Douglas P. Finkbeiner,et al.  A theory of dark matter , 2008, 0810.0713.

[18]  Rashmish K. Mishra,et al.  A Classification of Dark Matter Candidates with Primarily Spin-Dependent Interactions with Matter , 2010, 1003.1912.

[19]  E Aprile,et al.  First dark matter results from the XENON100 experiment. , 2010, Physical review letters.

[20]  F. Donato,et al.  Relic neutralinos and the two dark matter candidate events of the CDMS II experiment , 2009, 0912.4025.

[21]  Zuowei Liu,et al.  Low Mass Neutralino Dark Matter in the MSSM with Constraints from $B_s\to \mu^+\mu^-$ and Higgs Search Limits , 2010, 1003.0437.

[22]  A. Pierce,et al.  Momentum dependent dark matter scattering , 2009, 0908.3192.

[23]  Patrick J. Fox,et al.  Resonant dark matter , 2009, 0909.2900.

[24]  C. Winant,et al.  First results from the XENON10 dark matter experiment at the Gran Sasso National Laboratory. , 2007, Physical review letters.

[25]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[26]  G. Drake,et al.  Results from a search for light-mass dark matter with a p-type point contact germanium detector. , 2010, Physical review letters.

[27]  J. Kaplan,et al.  On the Origin of Light Dark Matter Species , 2010, 1004.0691.

[28]  A. J. Hughes,et al.  Limits on the spin-dependent WIMP-nucleon cross sections from the first science run of the ZEPLIN-III experiment. , 2009, Physical review letters.

[29]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[30]  S. Ask SEARCH FOR EXTRA DIMENSIONS AT LEP , 2004, hep-ex/0410004.

[31]  D O Caldwell,et al.  Dark Matter Search Results from the CDMS II Experiment , 2009, Science.

[32]  R. Harnik,et al.  Exothermic dark matter , 2010, 1004.0937.

[33]  A. Pierce,et al.  Light neutralinos with large scattering cross sections in the minimal supersymmetric standard model , 2010, 1003.0682.

[34]  M. Auger,et al.  Dark matter spin-dependent limits for WIMP interactions on 19F by PICASSO , 2009, 0907.0307.

[35]  J. Zupan,et al.  Global interpretation of direct Dark Matter searches after CDMS-II results , 2009, 0912.4264.

[36]  G. Kribs,et al.  Inelastic Dark Matter in Light of DAMA/LIBRA , 2008, 0807.2250.

[37]  A. Fitzpatrick,et al.  Form factor dark matter , 2009, 0908.2991.