Construction and characteristic analysis of background error covariance coupled with land surface temperature

[1]  Xia Zhang,et al.  Improving monthly mean land surface temperature estimation by merging four products using the generalized three-cornered hat method and maximum likelihood estimation , 2024, Remote Sensing of Environment.

[2]  X. Zou,et al.  Improving AHI radiance assimilation over land with the surface skin temperature constrained by station observations and its impact for quantitative precipitation forecasts , 2023, Monthly Weather Review.

[3]  F. Pappenberger,et al.  Coupled data assimilation at ECMWF: current status, challenges and future developments , 2022, Quarterly Journal of the Royal Meteorological Society.

[4]  Prashant Kumar,et al.  Impact of all‐sky water vapour channel radiance from INSAT‐3D/3DR satellite over South Asia region using WRF model , 2022, Quarterly Journal of the Royal Meteorological Society.

[5]  N. Nichols,et al.  The role of cross‐domain error correlations in strongly coupled 4D‐Var atmosphere–ocean data assimilation , 2020, Quarterly Journal of the Royal Meteorological Society.

[6]  Li Fang,et al.  An Assessment of the Impact of Land Thermal Infrared Observation on Regional Weather Forecasts Using Two Different Data Assimilation Approaches , 2018, Remote. Sens..

[7]  Claire E. Bulgin,et al.  The Impact of Satellite‐Derived Land Surface Temperatures on Numerical Weather Prediction Analyses and Forecasts , 2017 .

[8]  Elizabeth Good,et al.  An in situ‐based analysis of the relationship between land surface “skin” and screen‐level air temperatures , 2016 .

[9]  C. Kishtawal,et al.  Land surface temperature from INSAT‐3D imager data: Retrieval and assimilation in NWP model , 2016 .

[10]  S. Thiria,et al.  Variational assimilation of land surface temperature within the ORCHIDEE Land Surface Model Version 1.2.6 , 2016 .

[11]  Chris Snyder,et al.  Increasing the Skill of Probabilistic Forecasts: Understanding Performance Improvements from Model-Error Representations , 2015 .

[12]  Juanzhen Sun,et al.  Inhomogeneous Background Error Modeling for WRF-Var Using the NMC Method , 2014 .

[13]  José A. Sobrino,et al.  Satellite-derived land surface temperature: Current status and perspectives , 2013 .

[14]  Wenying He,et al.  Influence of surface temperature and emissivity on AMSU-A assimilation over land , 2011 .

[15]  K. Gallo,et al.  Evaluation of the Relationship between Air and Land Surface Temperature under Clear- and Cloudy-Sky Conditions , 2011 .

[16]  Miaoling Liang,et al.  China land soil moisture EnKF data assimilation based on satellite remote sensing data , 2011 .

[17]  Randal D. Koster,et al.  Assimilation of Satellite-Derived Skin Temperature Observations into Land Surface Models , 2010 .

[18]  Xingang Fan Impacts of Soil Heating Condition on Precipitation Simulations in the Weather Research and Forecasting Model , 2009 .

[19]  Ross N. Bannister,et al.  A review of forecast error covariance statistics in atmospheric variational data assimilation. I: Characteristics and measurements of forecast error covariances , 2008 .

[20]  D. M. Barker,et al.  Southern High-Latitude Ensemble Data Assimilation in the Antarctic Mesoscale Prediction System , 2005 .

[21]  P. Courtier,et al.  A strategy for operational implementation of 4D‐Var, using an incremental approach , 1994 .

[22]  John Derber,et al.  The National Meteorological Center's spectral-statistical interpolation analysis system , 1992 .

[23]  S. Liang,et al.  A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature , 2014, Science China Earth Sciences.

[24]  M. Fisher,et al.  Background Error Covariance Modelling , 2003 .