Decentralized Feedback Controllers for Robust Stabilization of Periodic Orbits of Hybrid Systems: Application to Bipedal Walking

This paper presents a systematic algorithm to design time-invariant decentralized feedback controllers to exponentially and robustly stabilize periodic orbits for hybrid dynamical systems against possible uncertainties in discrete-time phases. The algorithm assumes a family of parameterized and decentralized nonlinear controllers to co-ordinate interconnected hybrid subsystems based on a common phasing variable. The exponential and $\mathcal {H}_{2}$ robust stabilization problems of periodic orbits are translated into an iterative sequence of optimization problems involving bilinear and linear matrix inequalities. By investigating the properties of the Poincaré map, some sufficient conditions for the convergence of the iterative algorithm are presented. The power of the algorithm is finally demonstrated through designing a set of robust stabilizing local nonlinear controllers for walking of an underactuated 3-D autonomous bipedal robot with nine degrees of freedom, impact model uncertainties, and a decentralization scheme motivated by amputee locomotion with a transpelvic prosthetic leg.

[1]  Koushil Sreenath,et al.  Rapidly Exponentially Stabilizing Control Lyapunov Functions and Hybrid Zero Dynamics , 2014, IEEE Transactions on Automatic Control.

[2]  Robert D. Gregg,et al.  Hybrid invariance and stability of a feedback linearizing controller for powered prostheses , 2015, 2015 American Control Conference (ACC).

[3]  Jessy W. Grizzle,et al.  Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: Application to bipedal locomotion with ground height variations , 2016, Int. J. Robotics Res..

[4]  Aaron D. Ames,et al.  Planar multi-contact bipedal walking using hybrid zero dynamics , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[5]  E. Davison,et al.  On the stabilization of decentralized control systems , 1973 .

[6]  Aaron D. Ames,et al.  Human-Inspired Control of Bipedal Walking Robots , 2014, IEEE Transactions on Automatic Control.

[7]  Michael Goldfarb,et al.  Upslope Walking With a Powered Knee and Ankle Prosthesis: Initial Results With an Amputee Subject , 2011, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[8]  C. Canudas-de-Wit,et al.  Motion planning and feedback stabilization of periodic orbits for an Acrobot , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Dragoslav D. Šiljak,et al.  Decentralized control of complex systems , 2012 .

[10]  Christine Chevallereau,et al.  Models, feedback control, and open problems of 3D bipedal robotic walking , 2014, Autom..

[11]  Franck Plestan,et al.  Asymptotically stable walking for biped robots: analysis via systems with impulse effects , 2001, IEEE Trans. Autom. Control..

[12]  Maria Letizia Corradini,et al.  IEEE Transactions on Control Systems Technology , 2004 .

[13]  D. Henrion,et al.  Solving polynomial static output feedback problems with PENBMI , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  K. Pearson The control of walking. , 1976, Scientific American.

[15]  Franck Plestan,et al.  Stable walking of a 7-DOF biped robot , 2003, IEEE Trans. Robotics Autom..

[16]  Lubomír Bakule,et al.  Decentralized control: An overview , 2008, Annu. Rev. Control..

[17]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[18]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[19]  Marc D. Donner Real-Time Control of Walking , 1987, Progress in Computer Science.

[20]  Aaron D. Ames,et al.  A geometric approach to three-dimensional hipped bipedal robotic walking , 2007, 2007 46th IEEE Conference on Decision and Control.

[21]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1998, IEEE Trans. Autom. Control..

[22]  Carlos Canudas de Wit,et al.  A new model for control of systems with friction , 1995, IEEE Trans. Autom. Control..

[23]  Aaron D. Ames,et al.  Three-Dimensional Kneed Bipedal Walking: A Hybrid Geometric Approach , 2009, HSCC.

[24]  Koushil Sreenath,et al.  Embedding active force control within the compliant hybrid zero dynamics to achieve stable, fast running on MABEL , 2013, Int. J. Robotics Res..

[25]  Katie Byl,et al.  Approximate optimal control of the compass gait on rough terrain , 2008, 2008 IEEE International Conference on Robotics and Automation.

[26]  Russ Tedrake,et al.  L2-gain optimization for robust bipedal walking on unknown terrain , 2013, 2013 IEEE International Conference on Robotics and Automation.

[27]  Jonathon W. Sensinger,et al.  Towards Biomimetic Virtual Constraint Control of a Powered Prosthetic Leg , 2014, IEEE Transactions on Control Systems Technology.

[28]  M. Spong,et al.  CONTROLLED SYMMETRIES AND PASSIVE WALKING , 2002 .

[29]  Ian R. Manchester,et al.  Stable dynamic walking over uneven terrain , 2011, Int. J. Robotics Res..

[30]  Christine Chevallereau,et al.  Asymptotically Stable Walking of a Five-Link Underactuated 3-D Bipedal Robot , 2009, IEEE Transactions on Robotics.

[31]  Robert D. Gregg,et al.  A Robust Parameterization of Human Gait Patterns Across Phase-Shifting Perturbations , 2017, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[32]  Wassim M. Haddad,et al.  Impulsive and Hybrid Dynamical Systems: Stability, Dissipativity, and Control , 2006 .

[33]  Dongjun Lee,et al.  Passivity-Based Control of Bipedal Locomotion , 2007, IEEE Robotics & Automation Magazine.

[34]  Jessy W. Grizzle,et al.  Event-Based Stabilization of Periodic Orbits for Underactuated 3-D Bipedal Robots With Left-Right Symmetry , 2014, IEEE Transactions on Robotics.

[35]  Jonathon W. Sensinger,et al.  Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments With Transfemoral Amputees , 2014, IEEE Transactions on Robotics.

[36]  O. Toker,et al.  On the NP-hardness of solving bilinear matrix inequalities and simultaneous stabilization with static output feedback , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[37]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[38]  Katie Byl,et al.  Switching policies for metastable walking , 2013, 52nd IEEE Conference on Decision and Control.

[39]  Robert D. Gregg,et al.  Decentralized feedback controllers for exponential stabilization of hybrid periodic orbits: Application to robotic walking , 2016, 2016 American Control Conference (ACC).

[40]  Mohammad Aldeen,et al.  Stabilization of decentralized control systems , 1997 .

[41]  David C. Post,et al.  The effects of foot geometric properties on the gait of planar bipeds walking under HZD-based control , 2014, Int. J. Robotics Res..

[42]  Ludovic Righetti,et al.  Controlled Reduction With Unactuated Cyclic Variables: Application to 3D Bipedal Walking With Passive Yaw Rotation , 2013, IEEE Transactions on Automatic Control.

[43]  P. Leva Adjustments to Zatsiorsky-Seluyanov's segment inertia parameters. , 1996 .

[44]  S. Shankar Sastry,et al.  Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems , 2013, IEEE Transactions on Automatic Control.

[45]  Christine Chevallereau,et al.  RABBIT: a testbed for advanced control theory , 2003 .

[46]  W. Haddad,et al.  Nonlinear Dynamical Systems and Control: A Lyapunov-Based Approach , 2008 .

[47]  Marc H. Raibert,et al.  Legged robots , 1986, CACM.

[48]  Jessy W. Grizzle,et al.  Iterative Robust Stabilization Algorithm for Periodic Orbits of Hybrid Dynamical Systems: Application to Bipedal Running , 2015, ADHS.

[49]  Luca Consolini,et al.  Virtual Holonomic Constraints for Euler–Lagrange Systems , 2013, IEEE Transactions on Automatic Control.

[50]  D. Baĭnov,et al.  Systems with impulse effect : stability, theory, and applications , 1989 .

[51]  Milos Zefran,et al.  Underactuated dynamic three-dimensional bipedal walking , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[52]  Alberto Isidori,et al.  Nonlinear control systems: an introduction (2nd ed.) , 1989 .

[53]  Twan Koolen,et al.  Capturability-based analysis and control of legged locomotion, Part 2: Application to M2V2, a lower-body humanoid , 2012, Int. J. Robotics Res..

[54]  Jessy W. Grizzle,et al.  Continuous-time controllers for stabilizing periodic orbits of hybrid systems: Application to an underactuated 3D bipedal robot , 2014, 53rd IEEE Conference on Decision and Control.

[55]  Timothy Bretl,et al.  Control and Planning of 3-D Dynamic Walking With Asymptotically Stable Gait Primitives , 2012, IEEE Transactions on Robotics.

[56]  C. David Remy,et al.  Optimal exploitation of natural dynamics in legged locomotion , 2011 .

[57]  Leon O. Chua,et al.  Practical Numerical Algorithms for Chaotic Systems , 1989 .

[58]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[59]  Aaron D. Ames,et al.  A hybrid systems and optimization-based control approach to realizing multi-contact locomotion on transfemoral prostheses , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).

[60]  Ricardo G. Sanfelice,et al.  Hybrid Dynamical Systems: Modeling, Stability, and Robustness , 2012 .

[61]  Kimberly A. Ingraham,et al.  Configuring a Powered Knee and Ankle Prosthesis for Transfemoral Amputees within Five Specific Ambulation Modes , 2014, PloS one.

[62]  Dan B. Marghitu,et al.  Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..

[63]  Hartmut Geyer,et al.  Control of a Powered Ankle–Foot Prosthesis Based on a Neuromuscular Model , 2010, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[64]  Jessy W. Grizzle,et al.  Experimental results for 3D bipedal robot walking based on systematic optimization of virtual constraints , 2016, 2016 American Control Conference (ACC).

[65]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[66]  A. Michel,et al.  Stability theory for hybrid dynamical systems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[67]  R W Mann,et al.  An electrohydraulic knee-torque controller for a prosthesis simulator. , 1977, Journal of biomechanical engineering.

[68]  Jessy W. Grizzle,et al.  Performance Analysis and Feedback Control of ATRIAS, A Three-Dimensional Bipedal Robot , 2014 .