An Accelerating Two-Layer Anchor Search With Application to the Resource-Constrained Project Scheduling Problem

This paper presents a search method that combines elements from evolutionary and local search paradigms by the systematic use of crossover operations, generally used as structured exchange of genes between a series of solutions in genetic algorithms. Crossover operations here are particularly utilized as a systematic means to generate several possible solutions from two superior solutions. To test the effectiveness of the method, it has been applied to the resource-constrained project scheduling problem. The computational experiments show that the application of the method to this problem is promising.

[1]  F. Glover,et al.  In Modern Heuristic Techniques for Combinatorial Problems , 1993 .

[2]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[3]  Y. Kochetov,et al.  Evolutionary Local Search with Variable Neighborhood for the Resource Constrained Project Scheduling Problem , 2003 .

[4]  A. J. Clewett,et al.  Introduction to sequencing and scheduling , 1974 .

[5]  María Pilar Tormos,et al.  A Competitive Heuristic Solution Technique for Resource-Constrained Project Scheduling , 2001, Ann. Oper. Res..

[6]  Francisco Ballestín,et al.  A hybrid genetic algorithm for the resource-constrained project scheduling problem , 2008, Eur. J. Oper. Res..

[7]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[8]  E. Tsang,et al.  Guided Local Search , 2010 .

[9]  Sally A. McKee,et al.  Augmenting priority rule heuristics with justification and rollout to solve the resource-constrained project scheduling problem , 2008, Comput. Oper. Res..

[10]  Francisco Ballestín,et al.  Justification and RCPSP: A technique that pays , 2005, Eur. J. Oper. Res..

[11]  Sim Kim Lau,et al.  Embedding learning capability in Lagrangean relaxation: An application to the travelling salesman problem , 2010, Eur. J. Oper. Res..

[12]  Jafar Razmi,et al.  Using an enhanced scatter search algorithm for a resource-constrained project scheduling problem , 2009, Soft Comput..

[13]  Mutsunori Yagiura,et al.  The use of dynamic programming in genetic algorithms for permutation problems , 1996 .

[14]  Fred W. Glover,et al.  A Template for Scatter Search and Path Relinking , 1997, Artificial Evolution.

[15]  Rainer Kolisch Serial and parallel resource-constrained project scheduling methods revisited: Theory and computation , 1994 .

[16]  Thomas Stützle,et al.  Ant Colony Optimization , 2009, EMO.

[17]  I ScottKirkpatrick Optimization by Simulated Annealing: Quantitative Studies , 1984 .

[18]  F. Glover HEURISTICS FOR INTEGER PROGRAMMING USING SURROGATE CONSTRAINTS , 1977 .

[19]  Peter Brucker,et al.  Scheduling and constraint propagation , 2002, Discret. Appl. Math..

[20]  Fred W. Glover,et al.  Exploiting surrogate constraint analysis for fixing variables in both bounds for multidimensional knapsack problems , 2003, Proceedings of the Fourth Mexican International Conference on Computer Science, 2003. ENC 2003..

[21]  Mauricio G. C. Resende,et al.  Greedy Randomized Adaptive Search Procedures , 1995, J. Glob. Optim..

[22]  Sönke Hartmann,et al.  A self‐adapting genetic algorithm for project scheduling under resource constraints , 2002 .

[23]  Christian Artigues,et al.  LSSPER: Solving the Resource-Constrained Project Scheduling Problem with Large Neighbourhood Search , 2004, Ann. Oper. Res..

[24]  Krzysztof Fleszar,et al.  Solving the resource-constrained project scheduling problem by a variable neighbourhood search , 2004, Eur. J. Oper. Res..

[25]  George Tambouratzis,et al.  Using an Ant Colony Metaheuristic to Optimize Automatic Word Segmentation for Ancient Greek , 2009, IEEE Transactions on Evolutionary Computation.

[26]  David D. Bedworth,et al.  Integrated Production, Control Systems: Management, Analysis, and Design , 1982 .

[27]  Fred W. Glover,et al.  Principles of scatter search , 2006, Eur. J. Oper. Res..

[28]  Francisco Ballestín,et al.  A Population-Based Approach to the Resource-Constrained Project Scheduling Problem , 2004, Ann. Oper. Res..

[29]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[30]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[31]  Robert J Willis,et al.  An iterative scheduling technique for resource-constrained project scheduling , 1992 .

[32]  Rolf H. Möhring,et al.  Solving Project Scheduling Problems by Minimum Cut Computations , 2002, Manag. Sci..

[33]  Sönke Hartmann,et al.  A competitive genetic algorithm for resource-constrained project scheduling , 1998 .

[34]  Rainer Kolisch,et al.  Experimental investigation of heuristics for resource-constrained project scheduling: An update , 2006, Eur. J. Oper. Res..

[35]  Bert De Reyck,et al.  A hybrid scatter search/electromagnetism meta-heuristic for project scheduling , 2006, Eur. J. Oper. Res..

[36]  Hartmut Schmeck,et al.  Ant colony optimization for resource-constrained project scheduling , 2000, IEEE Trans. Evol. Comput..

[37]  Rainer Kolisch,et al.  PSPLIB - A project scheduling problem library: OR Software - ORSEP Operations Research Software Exchange Program , 1997 .

[38]  Enrique Alba,et al.  Benchmarking a Wide Spectrum of Metaheuristic Techniques for the Radio Network Design Problem , 2009, IEEE Transactions on Evolutionary Computation.

[39]  F. Glover,et al.  Fundamentals of Scatter Search and Path Relinking , 2000 .

[40]  Fred W. Glover,et al.  Genetic algorithms and tabu search: Hybrids for optimization , 1995, Comput. Oper. Res..