Thioreductor micantisoli gen. nov., sp. nov., a novel mesophilic, sulfur-reducing chemolithoautotroph within the epsilon-Proteobacteria isolated from hydrothermal sediments in the Mid-Okinawa Trough.

A novel mesophilic, hydrogen-oxidizing, sulfur-reducing bacterium, designated strain BKB25Ts-Y(T), was isolated from hydrothermal sediments at Iheya North in the Mid-Okinawa Trough, Japan. Cells were Gram-negative, motile rods (1.8-2.1 microm long and 0.5-0.7 microm wide). The isolate was a strictly anaerobic chemolithoautotroph capable of using molecular hydrogen as the sole energy source and carbon dioxide as the sole carbon source. Elemental sulfur and nitrate served as electron acceptors, respectively yielding hydrogen sulfide and ammonium. Growth was observed at 20-42 degrees C (optimum 32 degrees C; 3 h doubling time), pH 5.0-6.5 (optimum 6.0) and in the presence of 2.0-4.0 % NaCl (optimum 2.5 %) via respiratory S(0) reduction with H(2). The G+C content of the genomic DNA was 37.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that the isolate represented the first strain for which taxonomic properties have been characterized within the previously uncultivated epsilon-Proteobacteria Group G. On the basis of the physiological and molecular properties of the novel isolate, the genus name Thioreductor gen. nov. is proposed, with Thioreductor micantisoli sp. nov. as the type species. The type strain is BKB25Ts-Y(T) (=JCM 12457(T)=DSM 16661(T)).

[1]  K. Nealson,et al.  Isolation and phylogenetic diversity of members of previously uncultivated ε-Proteobacteria in deep-sea hydrothermal fields , 2003 .

[2]  E. Stackebrandt,et al.  Nautilia lithotrophica gen. nov., sp. nov., a thermophilic sulfur-reducing epsilon-proteobacterium isolated from a deep-sea hydrothermal vent. , 2002, International journal of systematic and evolutionary microbiology.

[3]  S. Cary,et al.  Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana , 1995, Applied and environmental microbiology.

[4]  K. Komagata,et al.  Research letterDetermination of DNA base composition by reversed-phase high-performance liquid chromatography , 1984 .

[5]  J. Susini,et al.  Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. , 2003, Environmental microbiology.

[6]  J. Querellou,et al.  Caminibacter hydrogeniphilus gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium isolated from an East Pacific Rise hydrothermal vent. , 2002, International journal of systematic and evolutionary microbiology.

[7]  H. Jannasch,et al.  Chemosynthetic microbial activity at Mid-Atlantic Ridge hydrothermal vent sites , 1993 .

[8]  B. Schulman,et al.  Hydrogen-oxidizing electron transport components in the hyperthermophilic archaebacterium Pyrodictium brockii , 1992, Journal of bacteriology.

[9]  J. Baross,et al.  Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. , 2003, FEMS microbiology ecology.

[10]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[11]  K. Nealson,et al.  Isolation and phylogenetic diversity of members of previously uncultivated epsilon-Proteobacteria in deep-sea hydrothermal fields. , 2003, FEMS microbiology letters.

[12]  C. Woese,et al.  Methanogens: reevaluation of a unique biological group , 1979, Microbiological reviews.

[13]  Y. Sako,et al.  Balnearium lithotrophicum gen. nov., sp. nov., a novel thermophilic, strictly anaerobic, hydrogen-oxidizing chemolithoautotroph isolated from a black smoker chimney in the Suiyo Seamount hydrothermal system. , 2003, International journal of systematic and evolutionary microbiology.

[14]  H. Klenk,et al.  Hyperthermus butylicus, a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides , 1990, Journal of bacteriology.

[15]  N. Saitou,et al.  The neighbor-joining method: a new method for reconstructing phylogenetic trees. , 1987, Molecular biology and evolution.

[16]  M. Polz,et al.  Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Y. Sako,et al.  Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. , 1996, International journal of systematic bacteriology.

[18]  E. Stackebrandt,et al.  Pyrodictium gen. nov., a New Genus of Submarine Disc-Shaped Sulphur Reducing Archaebacteria Growing Optimally at 105°C. , 1983, Systematic and applied microbiology.

[19]  D. Ord,et al.  PAUP:Phylogenetic analysis using parsi-mony , 1993 .

[20]  M. Zbinden,et al.  Early steps in microbial colonization processes at deep-sea hydrothermal vents. , 2004, Environmental microbiology.

[21]  E. Delong Archaea in coastal marine environments. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[22]  A. Reysenbach,et al.  Novel Bacterial and Archaeal Lineages from an In Situ Growth Chamber Deployed at a Mid-Atlantic Ridge Hydrothermal Vent , 2000, Applied and Environmental Microbiology.

[23]  K. Nealson,et al.  Hydrogenimonas thermophila gen. nov., sp. nov., a novel thermophilic, hydrogen-oxidizing chemolithoautotroph within the epsilon-Proteobacteria, isolated from a black smoker in a Central Indian Ridge hydrothermal field. , 2004, International journal of systematic and evolutionary microbiology.

[24]  Y. Sako,et al.  Persephonella hydrogeniphila sp. nov., a novel thermophilic, hydrogen-oxidizing bacterium from a deep-sea hydrothermal vent chimney. , 2003, International journal of systematic and evolutionary microbiology.

[25]  K. Porter,et al.  The use of DAPI for identifying and counting aquatic microflora1 , 1980 .

[26]  S. Spring,et al.  Caminibacter profundus sp. nov., a novel thermophile of Nautiliales ord. nov. within the class 'Epsilonproteobacteria', isolated from a deep-sea hydrothermal vent. , 2004, International journal of systematic and evolutionary microbiology.

[27]  K. Nealson,et al.  Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing epsilon-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. , 2003, International journal of systematic and evolutionary microbiology.

[28]  K. Nealson,et al.  Sulfurovum lithotrophicum gen. nov., sp. nov., a novel sulfur-oxidizing chemolithoautotroph within the epsilon-Proteobacteria isolated from Okinawa Trough hydrothermal sediments. , 2004, International journal of systematic and evolutionary microbiology.

[29]  E. Corre,et al.  ɛ-Proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge , 2001 .

[30]  H. König,et al.  Methanothermus sociabilis sp. nov., a Second Species within the Methanothermaceae Growing at 97°C , 1986 .

[31]  K. Stetter,et al.  Ignicoccus gen. nov., a novel genus of hyperthermophilic, chemolithoautotrophic Archaea, represented by two new species, Ignicoccus islandicus sp nov and Ignicoccus pacificus sp nov. and Ignicoccus pacificus sp. nov. , 2000, International journal of systematic and evolutionary microbiology.

[32]  David L. Wheeler,et al.  GenBank , 2015, Nucleic Acids Res..

[33]  A. Reysenbach,et al.  Expansion of the geographic distribution of a novel lineage of epsilon-Proteobacteria to a hydrothermal vent site on the Southern East Pacific Rise. , 2001, FEMS microbiology ecology.

[34]  E. Corre,et al.  Epsilon-proteobacterial diversity from a deep-sea hydrothermal vent on the Mid-Atlantic Ridge. , 2001, FEMS microbiology letters.