Intelligent methods for complex systems control engineering

This thesis proposes an intelligent multiple-controller framework for complex systems that incorporates a fuzzy logic based switching and tuning supervisor along with a neural network based generalized learning model (GLM). The framework is designed for adaptive control of both Single-Input Single-Output (SISO) and MultiInput Multi-Output (MIMO) complex systems. The proposed methodology provides the designer with an automated choice of using either: a conventional Proportional-Integral-Derivative (PID) controller, or a PID structure based (simultaneous) Pole and Zero Placement controller. The switching decisions between the two nonlinear fixed structure controllers is made on the basis of the required performance measure using the fuzzy logic based supervisor operating at the highest level of the system. The fuzzy supervisor is also employed to tune the parameters of the multiple-controller online in order to achieve the desired system performance. The GLM for modelling complex systems assumes that the plant is represented by an equivalent model consisting of a linear time-varying sub-model plus a learning nonlinear sub-model based on Radial Basis Function (RBF) neural network. The proposed control design brings together the dominant advantages of PID controllers (such as simplicity in structure and implementation) and the desirable attributes of Pole and Zero Placement controllers (such as stable set-point tracking and ease of parameters’ tuning). Simulation experiments using real-world nonlinear SISO and MIMO plant models, including realistic nonlinear vehicle models, demonstrate the effectiveness of the intelligent multiple-controller with respect to tracking set-point changes, achieve desired speed of response, prevent system output overshooting and maintain minimum variance input and output signals, whilst penalising excessive control actions.

[1]  Mohieddine Jelali,et al.  An overview of control performance assessment technology and industrial applications , 2006 .

[2]  Toru Yamamoto,et al.  A Neural-Net Based Controller Supplementing a Multiloop PID Control System , 2002, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..

[3]  J. Karl Hedrick,et al.  Intelligent cruise control applications: real-time embedded hybrid control software , 2005, IEEE Robotics & Automation Magazine.

[4]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[5]  Hassan K. Khalil,et al.  Output feedback control of nonlinear systems using RBF neural networks , 2000, IEEE Trans. Neural Networks Learn. Syst..

[6]  A. Hussain,et al.  Novel non-linear PID based multiple-controller incorporating a neural network learning sub-model , 2003, 7th International Multi Topic Conference, 2003. INMIC 2003..

[7]  Chuanwen Jiang,et al.  PID controller parameters optimization of hydro-turbine governing systems using deterministic-chaotic-mutation evolutionary programming (DCMEP) , 2006 .

[8]  Roderick Murray-Smith,et al.  The operating regime approach to nonlinear modelling and control , 1997 .

[9]  Ahmed El Hajjaji,et al.  Four-Wheel Steering Vehicle Control using Takagi-Sugeno Fuzzy Models , 2007, 2007 IEEE International Fuzzy Systems Conference.

[10]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[11]  Jon Rigelsford,et al.  Automotive Control Systems: For Engine, Driveline and Vehicle , 2004 .

[12]  Kevin M. Passino,et al.  Intelligent control for brake systems , 1999, IEEE Trans. Control. Syst. Technol..

[13]  Riccardo Marino,et al.  Adaptive control of linear time-varying systems , 2003, Autom..

[14]  Rubiyah Yusof,et al.  A multivariable self-tuning PID controller , 1993 .

[15]  Kumpati S. Narendra,et al.  Adaptive control using neural networks , 1990 .

[16]  Martin Brown,et al.  Neurofuzzy adaptive modelling and control , 1994 .

[17]  Gregory L. Plett,et al.  Adaptive inverse control of linear and nonlinear systems using dynamic neural networks , 2003, IEEE Trans. Neural Networks.

[18]  Marios M. Polycarpou,et al.  Fuzzy Logic based Switching and Tuning Supervisor for a Multi-variable Multiple Controller , 2007, 2007 IEEE International Fuzzy Systems Conference.

[19]  James S. Albus,et al.  Knowledge engineering for real time intelligent control , 2002, Proceedings of the IEEE Internatinal Symposium on Intelligent Control.

[20]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[21]  Roberto Horowitz,et al.  Emergency vehicle maneuvers and control laws for automated highway systems , 1998, IEEE Trans. Intell. Transp. Syst..

[22]  Kevin M. Passino,et al.  Intelligent control for autonomous systems , 1995 .

[23]  George N. Saridis,et al.  Analytic formulation of the principle of increasing precision with decreasing intelligence for intelligent machines , 1988, Autom..

[24]  Chong Yan,et al.  Modelling residence time distribution in chemical reactors : A novel generalised n-laminar model Application to supercritical CO2 and subcritical water tubular reactors , 2007 .

[25]  Peter J. Fleming,et al.  A connectionist approach to PID autotuning , 1991 .

[26]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[27]  Mieczysław A. Brdyś,et al.  FUZZY LOGIC GAIN SCHEDULING FOR NON-LINEAR SERVO TRACKING , 2002 .

[28]  Björn Wittenmark,et al.  On Self Tuning Regulators , 1973 .

[29]  Stephen Yurkovich,et al.  Rule-based control for a flexible-link robot , 1994, IEEE Trans. Control. Syst. Technol..

[30]  Kazuo Tanaka,et al.  Switching control of an R/C hovercraft: stabilization and smooth switching , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[31]  Kun Li,et al.  Modeling of traffic flow of automated vehicles , 2004, IEEE Transactions on Intelligent Transportation Systems.

[32]  Guang Ren,et al.  Fuzzy Switching Controller for Multiple Model , 2005, FSKD.

[33]  H. R. Sirisena,et al.  Multivariable pole-zero placement self-tuning controller† , 1986 .

[34]  O. L. Davies,et al.  Statistical methods in research and production , 1987 .

[35]  D. Flynn,et al.  Nonlinear identification and control of a turbogenerator-an on-line scheduled multiple model/controller approach , 2005, IEEE Transactions on Energy Conversion.

[36]  Job van Amerongen,et al.  A supervisor for control of mode-switch processes , 1994, Autom..

[37]  Robert C. Rice,et al.  Opening the Black Box: Demystifying Performance Assessment Techniques , 2005 .

[38]  Brian D. O. Anderson,et al.  Failures of adaptive control theory and their resolution , 2005, Commun. Inf. Syst..

[39]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[40]  Shuzhi Sam Ge,et al.  Adaptive neural control of uncertain MIMO nonlinear systems , 2004, IEEE Transactions on Neural Networks.

[41]  Niels Kjølstad Poulsen,et al.  Neural Networks for Modelling and Control of Dynamic Systems: A Practitioner’s Handbook , 2000 .

[42]  Kevin M. Passino,et al.  Stable multi-input multi-output adaptive fuzzy/neural control , 1999, IEEE Trans. Fuzzy Syst..

[43]  Ahmad B. Rad,et al.  Indirect adaptive fuzzy sliding mode control: Part I: fuzzy switching , 2001, Fuzzy Sets Syst..

[44]  Anthony G. Pipe,et al.  Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern , 2007 .

[45]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[46]  S. Chiu Using fuzzy logic in control applications: beyond fuzzy PID control , 1998 .

[47]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[48]  Dale E. Seborg,et al.  A SELF-TUNING CONTROLLER WITH A PID STRUCTURE , 1983 .

[49]  Léon Personnaz,et al.  Nonlinear internal model control using neural networks: application to processes with delay and design issues , 2000, IEEE Trans. Neural Networks Learn. Syst..

[50]  António E. Ruano,et al.  Neuro-genetic PID autotuning: time invariant case , 2000 .

[51]  Jean-Claude Trigeassou,et al.  DESIGN OF PID CONTROLLERS FOR DELAYED MIMO PLANTS USING MOMENTS BASED APPROACH , 2006 .

[52]  José Fernández-Seara,et al.  Experimental analysis of a domestic electric hot water storage tank. Part I: Static mode of operation , 2007 .

[53]  D. T. Pham,et al.  Identification of plant inverse dynamics using neural networks , 1999, Artif. Intell. Eng..

[54]  E. Mizutani,et al.  Neuro-Fuzzy and Soft Computing-A Computational Approach to Learning and Machine Intelligence [Book Review] , 1997, IEEE Transactions on Automatic Control.

[55]  D. Nakazawa,et al.  Model design and data analysis for multi-input multi-output systems , 2003, IEMC '03 Proceedings. Managing Technologically Driven Organizations: The Human Side of Innovation and Change (IEEE Cat. No.03CH37502).

[56]  Uwe Kiencke,et al.  Automotive Control Systems , 2005 .

[57]  Mustafa Khammash,et al.  Analysis of steady-state tracking errors in sampled-data systems with uncertainty , 2001, Autom..

[58]  Masayoshi Tomizuka,et al.  Fuzzy gain scheduling of PID controllers , 1993, IEEE Trans. Syst. Man Cybern..

[59]  Kaddour Najim Control of Continuous Linear Systems , 2006 .

[60]  Amir Hussain,et al.  A novel multiple-controller incorporating a radial basis function neural network based generalized learning model , 2006, Neurocomputing.

[61]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[62]  Helge-Björn Kuntze,et al.  A neuro-fuzzy supervisory control system for industrial batch processes , 2001, IEEE Trans. Fuzzy Syst..

[63]  Biao Huang,et al.  Performance Assessment of Control Loops , 1999 .

[64]  Okyay Kaynak,et al.  Robust and adaptive backstepping control for nonlinear systems using RBF neural networks , 2004, IEEE Transactions on Neural Networks.

[65]  Mandayam A. L. Thathachar,et al.  On the stability of fuzzy systems , 1997, IEEE Trans. Fuzzy Syst..

[66]  Peng-Yung Woo,et al.  Fuzzy supervisory sliding-mode and neural-network control for robotic manipulators , 2006, IEEE Transactions on Industrial Electronics.

[67]  M. Grimble,et al.  Adaptive Predictive Control using Multiple Models, Switching and Tuning , 2006 .

[68]  Petros A. Ioannou,et al.  Using front and back information for tight vehicle following maneuvers , 1999 .

[69]  Kevin N. Gurney,et al.  An introduction to neural networks , 2018 .

[70]  Leslie S. Smith,et al.  A modified generalised minimum-variance stochastic self-tuning controller with pole-zero placement , 2001, Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century..

[71]  Thomas S. Brinsmead,et al.  Multiple model adaptive control. Part 2: switching , 2001 .

[72]  A. Y. Allidina,et al.  Generalised self-tuning controller with pole assignment , 1980 .

[73]  P.J. Antsaklis,et al.  Intelligent Learning Control , 1995, IEEE Control Systems.

[74]  Jerry M. Mendel,et al.  Type-2 fuzzy sets made simple , 2002, IEEE Trans. Fuzzy Syst..

[75]  F. R. Gantmakher The Theory of Matrices , 1984 .

[76]  Liu Meiqin Stability analysis of neutral-type nonlinear delayed systems: An LMI approach * , 2006 .

[77]  K. S. P. Kumar,et al.  Multivariable self-tuning regulator with generalized cost-function† , 1981 .

[78]  Marimuthu Palaniswami,et al.  Effects of moving the centers in an RBF network , 1998, 1998 IEEE International Joint Conference on Neural Networks Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98CH36227).

[79]  Konghui Guo,et al.  DEVELOPMENT OF A LONGITUDINAL AND LATERAL DRIVER MODEL FOR AUTONOMOUS VEHICLE CONTROL , 2004 .

[80]  Karl Johan Åström,et al.  PID Controllers: Theory, Design, and Tuning , 1995 .

[81]  M. Farsi,et al.  Intelligent multi-controller assessment using fuzzy logic , 1996, Fuzzy Sets Syst..

[82]  Christophe Bobda,et al.  Dynamic reconfiguration of distributed arithmetic controllers: design space exploration and trade-off analysis , 2004, 18th International Parallel and Distributed Processing Symposium, 2004. Proceedings..

[83]  van Albertus Jozephus Nicolaas van Breemen Breemen Agent-Based Multi-Controller Systems - A design framework for complex control problems , 2001 .

[84]  Vladimir B. Bajic,et al.  Nonlinear self-turning controller for Hammerstein plants with application to a pressure tank , 2000, Int. J. Comput. Syst. Signals.

[85]  Jin Zhang,et al.  Neural-network control of nonaffine nonlinear system with zero dynamics by state and output feedback , 2003, IEEE Trans. Neural Networks.

[86]  Petros A. Ioannou,et al.  Throttle and Brake Control Systems for Automatic Vehicle following , 1994, J. Intell. Transp. Syst..

[87]  Ali Cinar,et al.  Multivariable MPC system performance assessment, monitoring, and diagnosis , 2004 .

[88]  Gwo-Ruey Yu,et al.  Gain scheduling for lateral motion of propulsion controlled aircraft using neural networks , 1997, Proceedings of the 1997 American Control Conference (Cat. No.97CH36041).

[89]  Cheng-Yuan Chang,et al.  A self-tuning fuzzy filtered-U algorithm for the application of active noise cancellation , 2002 .

[90]  S. Joe Qin,et al.  Recent developments in multivariable controller performance monitoring , 2007 .

[91]  A.S. Zayed,et al.  Stability analysis of a new non-linear pole-zero placement controller incorporating neural networks , 2003, 7th International Multi Topic Conference, 2003. INMIC 2003..

[92]  Venkat Venkatasubramanian,et al.  Internal model control framework using neural networks for the modeling and control of a bioreactor , 1995 .

[93]  Stephen Yurkovich,et al.  Rule-based supervisory control of a two-link flexible manipulator , 1993, J. Intell. Robotic Syst..

[94]  Nam Mai-Duy,et al.  Solving biharmonic problems with scattered-point discretization using indirect radial-basis-function networks , 2006 .

[95]  A. Isaksson,et al.  A modified index for control performance assessment , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[96]  W. TanW.,et al.  Uncertain Rule-Based Fuzzy Logic Systems , 2007 .

[97]  Thomas S. Brinsmead,et al.  Multiple model adaptive control with safe switching , 2001 .

[98]  Luca Zaccarian,et al.  A common framework for anti-windup, bumpless transfer and reliable designs , 2002, Autom..

[99]  Tsu-Tian Lee,et al.  A neural gain scheduling network controller for nonholonomic systems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[100]  Karl-Erik Årzén,et al.  Expert control , 1986, at - Automatisierungstechnik.

[101]  Alexander L. Fradkov,et al.  Nonlinear and Adaptive Control of Complex Systems , 1999 .

[102]  Amir Hussain,et al.  Autonomous intelligent cruise control using a novel multiple-controller framework incorporating fuzzy-logic-based switching and tuning , 2008, Neurocomputing.

[103]  António E. Ruano,et al.  Intelligent Control Systems using Computational Intelligence Techniques , 2005 .

[104]  Robert M. Sanner,et al.  Gaussian Networks for Direct Adaptive Control , 1991, 1991 American Control Conference.

[105]  Hani Hagras,et al.  A Genetic Algorithm Based Architecture for Evolving Type-2 Fuzzy Logic Controllers for Real World Autonomous Mobile Robots , 2007, 2007 IEEE International Fuzzy Systems Conference.

[106]  David Clarke,et al.  Self-tuning control , 1979 .

[107]  Daniel Sbarbaro,et al.  Neural Networks for Nonlinear Internal Model Control , 1991 .

[108]  Quanmin Zhu,et al.  Neural network enhanced generalised minimum variance self-tuning controller for nonlinear discrete-time systems , 1999 .

[109]  Leehter Yao,et al.  Design of Gain Scheduled Fuzzy PID Controller , 2007, International Conference on Computational Intelligence.

[110]  A. Hussain,et al.  A New Radial Basis Function Neural Network Based Multi-variable Adaptive Pole-Zero Placement Controller , 2006, 2006 IEEE International Conference on Engineering of Intelligent Systems.

[111]  Aytekin Bagis,et al.  Determining fuzzy membership functions with tabu search - an application to control , 2003, Fuzzy Sets Syst..

[112]  Kumpati S. Narendra,et al.  Intelligent control using neural networks and multiple models , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[113]  Ronald G. Harley,et al.  MLP/RBF neural-networks-based online global model identification of synchronous generator , 2005, IEEE Transactions on Industrial Electronics.

[114]  John C. Platt A Resource-Allocating Network for Function Interpolation , 1991, Neural Computation.

[115]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[117]  Stephen Yurkovich,et al.  Fuzzy Control , 1997 .

[118]  Ping He,et al.  Stability criteria of linear neutral systems with a single delay , 2004, Appl. Math. Comput..

[119]  Amir Hussain,et al.  A new neural network and pole placement based adaptive composite controller , 2001, Proceedings. IEEE International Multi Topic Conference, 2001. IEEE INMIC 2001. Technology for the 21st Century..

[120]  Kumpati S. Narendra,et al.  Issues in the application of neural networks for tracking based on inverse control , 1999, IEEE Trans. Autom. Control..

[121]  J. Farrell,et al.  Adaptive Approximation Based Control: Unifying Neural, Fuzzy and Traditional Adaptive Approximation Approaches (Adaptive and Learning Systems for Signal Processing, Communications and Control Series) , 2006 .

[122]  Karl Johan Åström,et al.  Control of complex systems , 2001 .

[123]  Alexander S. Poznyak,et al.  Indirect adaptive control via parallel dynamic neural networks , 1999 .

[124]  Choon-Young Lee Adaptive Control of a Class of Nonlinear Systems Using Multiple Parameter Models , 2006 .

[125]  Mohammad Abdul Mannan,et al.  A Fuzzy-Logic-Based Self-Tuning PI Controller for High-Performance Vector Controlled Induction Motor Drive , 2006 .

[126]  A. Stephen Morse,et al.  Control Using Logic-Based Switching , 1997 .

[127]  Ulf Borison,et al.  Self-tuning regulators for a class of multivariable systems , 1979, Autom..

[128]  Bilin Aksun Güvenç,et al.  Robust two degree-of-freedom vehicle steering controller design , 2004, IEEE Transactions on Control Systems Technology.

[129]  Ian D. Walker,et al.  Diagnosis of automotive electronic throttle control systems , 2004 .

[130]  J. Connelly,et al.  Current challenges in autonomous vehicle development , 2006, SPIE Defense + Commercial Sensing.

[131]  Amir Hussain,et al.  A New Multivariable Generalized Minimum-Variance Controller with Pole-Zero Placement , 2004, Control. Intell. Syst..

[132]  José Eugenio Naranjo,et al.  Adaptive fuzzy control for inter-vehicle gap keeping , 2003, IEEE Trans. Intell. Transp. Syst..

[133]  Marzuki Khalid,et al.  Self-tuning PID control: A multivariable derivation and application , 1993, Autom..

[134]  Heikki N. Koivo,et al.  A multivariable self-tuning controller , 1980, Autom..

[135]  Kumpati S. Narendra,et al.  Adaptive control of discrete-time systems using multiple models , 2000, IEEE Trans. Autom. Control..