Topological Time Series Analysis

Time series are ubiquitous in our data rich world. In what follows I will describe how ideas from dynamical systems and topological data analysis can be combined to gain insights from time-varying data. We will see several applications to the live sciences and engineering, as well as some of the theoretical underpinnings.

[1]  A. Katok,et al.  NONUNIFORM MEASURE RIGIDITY , 2008, 0803.3094.

[2]  Michal Adamaszek,et al.  The Vietoris-Rips complexes of a circle , 2015, ArXiv.

[3]  Firas A. Khasawneh,et al.  Chatter Classification in Turning Using Machine Learning and Topological Data Analysis , 2018, IFAC-PapersOnLine.

[4]  F. Takens Detecting strange attractors in turbulence , 1981 .

[5]  Y. Sinai,et al.  Theory of dynamical systems and general transformation groups with invariant measure , 1977 .

[6]  Michael Lin,et al.  Twisty Takens: a geometric characterization of good observations on dense trajectories , 2018, Journal of Applied and Computational Topology.

[7]  Radmila Sazdanovic,et al.  Vietoris-Rips and Cech Complexes of Metric Gluings , 2017, SoCG.

[8]  J. Latschev Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold , 2001 .

[9]  Firas A. Khasawneh,et al.  Chatter detection in turning using persistent homology , 2016 .

[10]  Michal Adamaszek,et al.  On Vietoris–Rips complexes of ellipses , 2019, Journal of Topology and Analysis.

[11]  Jose A. Perea Persistent homology of toroidal sliding window embeddings , 2016, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[12]  F. Takens,et al.  On the nature of turbulence , 1971 .

[13]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[14]  Jose A. Perea,et al.  (Quasi)Periodicity Quantification in Video Data, Using Topology , 2017, SIAM J. Imaging Sci..

[15]  A. Katok,et al.  Invariant measures and the set of exceptions to Littlewood's conjecture , 2006, math/0612721.

[16]  A. Katok,et al.  First cohomology of Anosov actions of higher rank abelian groups and applications to rigidity , 1994 .

[17]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[18]  R. Ho Algebraic Topology , 2022 .

[19]  Divakar Viswanath,et al.  The fractal property of the Lorenz attractor , 2004 .

[20]  Viorel Nitica,et al.  Rigidity in Higher Rank Abelian Group Actions: Volume 1, Introduction and Cocycle Problem , 2011 .

[21]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[22]  Jose A. Perea,et al.  SW1PerS: Sliding windows and 1-persistence scoring; discovering periodicity in gene expression time series data , 2015, BMC Bioinformatics.

[23]  J. Milnor Fubini Foiled: Katok’s Paradoxical Example in Measure Theory , 1997 .

[24]  Matthew Berger,et al.  Topological Eulerian Synthesis of Slow Motion Periodic Videos , 2018, 2018 25th IEEE International Conference on Image Processing (ICIP).

[25]  M. Scheffer,et al.  Slowing down as an early warning signal for abrupt climate change , 2008, Proceedings of the National Academy of Sciences.

[26]  Jose A. Perea A Brief History of Persistence , 2018, ArXiv.

[27]  A. Katok,et al.  The development of dynamics in the 20th century and the contribution of Jürgen Moser , 2002, Ergodic Theory and Dynamical Systems.

[28]  Mikael Vejdemo-Johansson,et al.  Automatic recognition and tagging of topologically different regimes in dynamical systems , 2013, ArXiv.

[29]  Hamid Krim,et al.  Persistent Homology of Delay Embeddings and its Application to Wheeze Detection , 2014, IEEE Signal Processing Letters.

[30]  Philippe Faure,et al.  Is there chaos in the brain? II. Experimental evidence and related models. , 2003, Comptes rendus biologies.

[31]  Robert D. MacPherson,et al.  Measuring Shape with Topology , 2010, ArXiv.

[32]  Anatole Katok,et al.  Combinatorial constructions in ergodic theory and dynamics , 2003 .

[33]  Jose A. Perea,et al.  Sliding Windows and Persistence: An Application of Topological Methods to Signal Analysis , 2013, Found. Comput. Math..

[34]  Gunnar E. Carlsson,et al.  Topological pattern recognition for point cloud data* , 2014, Acta Numerica.

[35]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[36]  Zhenqi Wang LOCAL RIGIDITY OF PARTIALLY HYPERBOLIC ACTIONS , 2009, 0910.5038.

[37]  J. Zukas Introduction to the Modern Theory of Dynamical Systems , 1998 .

[38]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[39]  Anatole Katok,et al.  FIFTY YEARS OF ENTROPY IN DYNAMICS: 1958-2007 , 2007 .

[40]  Anatole Katok,et al.  Invariant measures for higher-rank hyperbolic abelian actions , 1996, Ergodic Theory and Dynamical Systems.

[41]  A. Katok,et al.  Ergodic theory and Weil measures for foliations , 1987 .

[42]  J. Meiss,et al.  Exploring the topology of dynamical reconstructions , 2015, 1506.01128.

[43]  Edgar J. Lobaton,et al.  Action classification from motion capture data using topological data analysis , 2016, 2016 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[44]  W. Crawley-Boevey Decomposition of pointwise finite-dimensional persistence modules , 2012, 1210.0819.

[45]  A. Katok Moscow dynamics seminars of the Nineteen seventies and the early career of Yasha Pesin , 2008 .

[46]  A. Katok,et al.  Bernoulli diffeomorphisms and group extensions of dynamical systems with non-zero characteristic exponents , 1981 .

[47]  Y. Pesin,et al.  Every compact manifold carries a completely hyperbolic diffeomorphism , 2002, Ergodic Theory and Dynamical Systems.

[48]  P. Lio’,et al.  Periodic gene expression program of the fission yeast cell cycle , 2004, Nature Genetics.