Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods.

The relative frequencies of functional traits of plant species show notable spatial variation, which is often related to environmental factors. Pollination type (insect-, wind- or self-pollination) is a critical trait for plant reproduction and provision of ecosystem services. Here, we mapped the distribution of pollination types across Germany by combining databases on plant distribution and plant pollination types. Applying a new method, we modelled the composition of pollination types using a set of 12 environmental variables as predictors within a Bayesian framework which allows for the analysis of compositional data in the presence of spatial autocorrelation. A clear biogeographical pattern in the distribution of pollination types was revealed which was adequately captured by our model. The most striking relationship was a relative increase in insect-pollination and a corresponding decrease of selfing with increasing altitude. Further important factors were wind speed, geology and land use. We present a powerful tool to analyse the distribution patterns of plant functional types such as pollination types and their relationship with environmental parameters in a spatially explicit framework.

[1]  Y. Dupont,et al.  Evolution of apomixis as a strategy of colonization in the dioecious species Lindera glauca (Lauraceae) , 2002, Population Ecology.

[2]  J. Lawton,et al.  The biogeography of scarce vascular plants in Britain with respect to habitat preference dispersal ability and reproductive biology , 1994 .

[3]  H. Ellenberg,et al.  Vegetation Mitteleuropas mit den Alpen , 1984 .

[4]  P. Legendre,et al.  RELATING BEHAVIOR TO HABITAT: SOLUTIONS TO THEFOURTH-CORNER PROBLEM , 1997 .

[5]  Richard Field,et al.  ENERGY, WATER, AND BROAD‐SCALE GEOGRAPHIC PATTERNS OF SPECIES RICHNESS , 2003 .

[6]  Fritz Haefke,et al.  Physische Geographie Deutschlands : eine Einführung mit Betonnung der Geomorphologie , 1960 .

[7]  J. Pausas,et al.  Plant Functional Types in relation to disturbance and land use: Introduction , 2003 .

[8]  David J. Currie,et al.  A Globally Consistent Richness‐Climate Relationship for Angiosperms , 2003, The American Naturalist.

[9]  S. Kalisz,et al.  BENEFITS OF AUTONOMOUS SELFING UNDER UNPREDICTABLE POLLINATOR ENVIRONMENTS , 2003 .

[10]  P. Legendre Spatial Autocorrelation: Trouble or New Paradigm? , 1993 .

[11]  A. Richards,et al.  Plant Breeding Systems , 1986 .

[12]  J. Besag,et al.  On conditional and intrinsic autoregressions , 1995 .

[13]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[14]  D. Roberts,et al.  Elevational gradients of species diversity, breeding system and floral traits of orchid species on Réunion Island , 2005 .

[15]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[16]  H. G. Baker,et al.  The Evolution of Weeds , 1974 .

[17]  R. Naiman,et al.  Invasibility of species-rich communities in riparian zones , 1996 .

[18]  G. Daily,et al.  The diversity and conservation of plant reproductive and dispersal functional traits in human‐dominated tropical landscapes , 2006 .

[19]  M. Roderick,et al.  Challenging Theophrastus: A common core list of plant traits for functional ecology , 1999 .

[20]  D. Whitehead CHAPTER 5 – Wind Pollination: Some Ecological and Evolutionary Perspectives , 1983 .

[21]  Stephen P. Brooks,et al.  Assessing Convergence of Markov Chain Monte Carlo Algorithms , 2007 .

[22]  John Aitchison,et al.  The Statistical Analysis of Compositional Data , 1986 .

[23]  G. Kudo,et al.  Wind pollination and insect pollination of two temperate willow species, Salix miyabeana and Salix sachalinensis , 2000, Plant Ecology.

[24]  Sean C. Thomas,et al.  The worldwide leaf economics spectrum , 2004, Nature.

[25]  J. Besag,et al.  Bayesian image restoration, with two applications in spatial statistics , 1991 .

[26]  J. G. Packer DIFFERENTIATION AND DISPERSAL IN ALPINE FLORAS , 1974 .

[27]  T. Bataillon,et al.  How Does Self-Pollination Evolve? Inferences from Floral Ecology and Molecular Genetic Variation , 1996 .

[28]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[29]  Jean Thioulouse,et al.  CO‐INERTIA ANALYSIS AND THE LINKING OF ECOLOGICAL DATA TABLES , 2003 .

[30]  R. Geiger,et al.  The Climate near the Ground , 1951 .

[31]  F. Gugerli Effect of elevation on sexual reproduction in alpine populations of Saxifraga oppositifolia (Saxifragaceae) , 1998, Oecologia.

[32]  C. Skarpe Plant functional types and climate in a southern African savanna , 1996 .

[33]  D. Whitehead WIND POLLINATION IN THE ANGIOSPERMS: EVOLUTIONARY AND ENVIRONMENTAL CONSIDERATIONS , 1969, Evolution; international journal of organic evolution.

[34]  Luc Anselin,et al.  Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics , 1995 .

[35]  I. Kühn,et al.  Plant distribution patterns in Germany – Will aliens match natives? , 2003 .

[36]  T. Stuessy,et al.  Breeding System and pollination of selected plants endemic to Juan Fernandez Islands. , 2001, American journal of botany.

[37]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[38]  Mike Rees,et al.  5. Statistics for Spatial Data , 1993 .

[39]  L. Aarssen Why are most selfers annuals? A new hypothesis for the fitness benefit of selfing , 2000 .

[40]  W. Bond,et al.  Ecological aspects of the rise of angiosperms: a challenge to the reproductive superiority hypotheses , 1991 .

[41]  P. Guttorp,et al.  Statistical Analysis and Interpretation of Discrete Compositional Data , 1998 .

[42]  Natural variability of benthic species composition in the Delaware Bay , 2004, Environmental and Ecological Statistics.

[43]  Wolfgang Cramer,et al.  Plant functional types and disturbance dynamics – Introduction , 1999 .

[44]  V. Mosbrugger,et al.  Environmental signals from leaves--a physiognomic analysis of European vegetation. , 2005, The New phytologist.

[45]  P. Hollingsworth,et al.  The use of molecular markers to study patterns of genotypic diversity in some invasive alien Fallopia spp. (Polygonaceae) , 1998 .

[46]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[47]  D. Billheimer Spatial Models for Discrete Compositional Data , 2007 .

[48]  P. Berry,et al.  WIND POLLINATION, SELF‐INCOMPATIBILITY, AND ALTITUDINAL SHIFTS IN POLLINATION SYSTEMS IN THE HIGH ANDEAN GENUS ESPELETIA (ASTERACEAE) , 1989 .

[49]  S. Díaz,et al.  Plant functional traits, ecosystem structure and land-use history along a climatic gradient in central-western Argentina , 1999 .

[50]  A. Lausch,et al.  Native and alien plant species richness in relation to spatial heterogeneity on a regional scale in Germany , 2003 .

[51]  W. Barthlott,et al.  Global patterns of plant diversity and floristic knowledge , 2005 .

[52]  P. Guttorp,et al.  Statistical Interpretation of Species Composition , 2001 .

[53]  Marco Vighi,et al.  ALARM: Assessing LArge-scale environmental Risks for biodiversity with tested Methods , 2005 .

[54]  Robert Haining,et al.  Spatial Data Analysis: Theory and Practice , 2003 .

[55]  L. C. Bliss Adaptations of Arctic and Alpine Plants to Environmental Conditions , 1962 .

[56]  R. Lande,et al.  THE ROLE OF GENETIC VARIATION IN ADAPTATION AND POPULATION PERSISTENCE IN A CHANGING ENVIRONMENT , 1996, Evolution; international journal of organic evolution.

[57]  K. Niklas The aerodynamics of wind pollination , 1985, The Botanical Review.

[58]  P. Regal POLLINATION BY WIND AND ANIMALS: Ecology of Geographic Patterns , 1982 .

[59]  S. Kalisz,et al.  Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating , 2004, Nature.

[60]  P. Legendre,et al.  Developments in Numerical Ecology , 1988 .

[61]  J. P. Grime,et al.  Testing predictions of the resistance and resilience of vegetation subjected to extreme events , 1995 .

[62]  P. Pyšek,et al.  Weed vegetation of arable land in Central Europe: Gradients of diversity and species composition , 2004 .

[63]  S. Weller,et al.  The evolution of wind pollination in angiosperms , 2002 .

[64]  P. D. Körner Alpine Plant Life , 2003, Springer Berlin Heidelberg.

[65]  E. Schröder,et al.  Das europäische Schutzgebietssystem Natura 2000 Ökologie und Verbreitung von Arten der FFH-Richtlinie in Deutschland , 2003 .

[66]  W. Kunin Density and reproductive success in wild populations of Diplotaxis erucoides (Brassicaceae) , 1992, Oecologia.

[67]  W. Bond,et al.  How Important is Biotic Pollination and Dispersal to the Success of the Angiosperms? [and Discussion] , 1991 .

[68]  Wilfried Thuiller,et al.  RELATING PLANT TRAITS AND SPECIES DISTRIBUTIONS ALONG BIOCLIMATIC GRADIENTS FOR 88 LEUCADENDRON TAXA , 2004 .

[69]  Noel A. C. Cressie,et al.  Statistics for Spatial Data: Cressie/Statistics , 1993 .

[70]  L. C. Blisst ADAPTATIONS OF ARCTIC AND ALPINE PLANTS TO ENVIRONMENTAL CONDITIONS * , 2007 .

[71]  P. Reich,et al.  Assessing the generality of global leaf trait relationships. , 2005, The New phytologist.

[72]  P. Kevan,et al.  Insects and plants in the pollination ecology of the boreal zone , 1993, Ecological Research.

[73]  D. Penny The comparative method in evolutionary biology , 1992 .

[74]  R. H. Shaw The Climate Near the Ground , 1957 .

[75]  H. Couderc,et al.  Adaptation de la fleur entomophile de l'Anthyllis vulneraria L. à l'autogamie , 1978 .

[76]  Sandra Lavorel,et al.  Disturbance response in vegetation – towards a global perspective on functional traits , 1999 .

[77]  H. G. Baker,et al.  SELF‐COMPATIBILITY AND ESTABLISHMENT AFTER ‘“LONG‐DISTANCE” DISPERSAL , 1955 .

[78]  BiolFlor — a new plant‐trait database as a tool for plant invasion ecology , 2004 .