Two edge-disjoint paths with length constraints

Abstract We consider the problem of finding, for two pairs ( s 1 , t 1 ) and ( s 2 , t 2 ) of vertices in an undirected graph, an ( s 1 , t 1 ) -path P 1 and an ( s 2 , t 2 ) -path P 2 such that P 1 and P 2 share no edges and the length of each P i satisfies constraint L i , where L i ∈ { ≤ k i , = k i , ≥ k i , ⁎ } with L i = “ ⁎ ” indicating no length constraint on P i . We regard k 1 and k 2 as parameters and investigate the parameterized complexity of the above problem when at least one of P 1 and P 2 has a length constraint. For the 9 different cases of ( L 1 , L 2 ) , we obtain FPT algorithms for 7 of them by using random partition backed by some structural results. On the other hand, we prove that the problem admits no polynomial kernel for all 9 cases unless N P ⊆ c o N P / p o l y .

[1]  Tatsuo Ohtsuki,et al.  The two disjoint path problem and wire routing design , 1980, Graph Theory and Algorithms.

[2]  B. Mohar,et al.  Graph Minors , 2009 .

[3]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[4]  Petr A. Golovach,et al.  Paths of bounded length and their cuts: Parameterized complexity and algorithms , 2009, Discret. Optim..

[5]  Harold N. Gabow,et al.  Finding Long Paths, Cycles and Circuits , 2008, ISAAC.

[6]  Tali Eilam-Tzoreff,et al.  The Disjoint Shortest Paths Problem , 1998, Discret. Appl. Math..

[7]  D. West Introduction to Graph Theory , 1995 .

[8]  Fahad Panolan,et al.  Long directed (s, t)-path: FPT algorithm , 2018, Inf. Process. Lett..

[9]  Carsten Thomassen,et al.  2-Linked Graphs , 1980, Eur. J. Comb..

[10]  Noga Alon,et al.  Color-coding , 1995, JACM.

[11]  James B. Orlin,et al.  Max flows in O(nm) time, or better , 2013, STOC '13.

[12]  Michal Pilipczuk,et al.  Parameterized Complexity of Eulerian Deletion Problems , 2012, Algorithmica.

[13]  Hans L. Bodlaender,et al.  On Linear Time Minor Tests with Depth-First Search , 1993, J. Algorithms.

[14]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[15]  Stefan Kratsch,et al.  Kernelization Lower Bounds by Cross-Composition , 2012, SIAM J. Discret. Math..

[16]  Aravind Srinivasan,et al.  Splitters and near-optimal derandomization , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[17]  Júlio Araújo,et al.  On the Complexity of Finding Internally Vertex-Disjoint Long Directed Paths , 2017, Algorithmica.

[18]  Nader H. Bshouty,et al.  Linear Time Constructions of Some d -Restriction Problems , 2014, CIAC.

[19]  Spyros Tragoudas,et al.  Disjoint Paths with Length Constraints , 1999, Int. J. Comput. Their Appl..

[20]  Hadas Shachnai,et al.  Representative Families: A Unified Tradeoff-Based Approach , 2014, ESA.

[21]  Leizhen Cai,et al.  Incompressibility of $$H$$H-Free Edge Modification Problems , 2014, Algorithmica.

[22]  Yossi Shiloach,et al.  A Polynomial Solution to the Undirected Two Paths Problem , 1980, JACM.

[23]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2007, J. Comput. Syst. Sci..

[24]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[25]  Fahad Panolan,et al.  Efficient Computation of Representative Families with Applications in Parameterized and Exact Algorithms , 2016, J. ACM.

[26]  Dekel Tsur,et al.  Faster deterministic parameterized algorithm for k-Path , 2018, Theor. Comput. Sci..

[27]  Anders Yeo,et al.  Kernel Bounds for Disjoint Cycles and Disjoint Paths , 2009, ESA.

[28]  Alon Itai,et al.  On the Complexity of Timetable and Multicommodity Flow Problems , 1976, SIAM J. Comput..

[29]  Meirav Zehavi Mixing Color Coding-Related Techniques , 2015, ESA.

[30]  Paul D. Seymour Disjoint paths in graphs , 2006, Discret. Math..

[31]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[32]  Leizhen Cai,et al.  Random Separation: A New Method for Solving Fixed-Cardinality Optimization Problems , 2006, IWPEC.