Magnetic media patterned by laser interference lithography

In the last century there has been an accelerated development in information technologies, with an enhanced trend in magnetic storage systems. In order to be sustained, this accelerated development requires the creation of new technologies and devices which could allow higher storage densities, portability, lower power consumption and faster access and processing of the retrieved information. This work is the result of four years of research in the field of magnetic patterned media with potential applications for ultra high density information storage systems. A novel tool, Laser Interference Lithography (LIL) has been used in order to fabricate an experimental prototype of such media.

[1]  Mark L. Schattenburg,et al.  Fabrication of large area nanostructured magnets by interferometric lithography , 1998 .

[2]  Henry I. Smith,et al.  Thermal stability of the magnetization of 150 nm×230 nm Ni19Fe81 elements , 2003 .

[3]  R. White,et al.  Patterned Media: A Viable Route to 50 Gbit/in2 and Up for Magnetic Recording? , 1997 .

[4]  Axel Scherer,et al.  Writing and reading of single magnetic domain per bit perpendicular patterned media , 1999 .

[5]  J. Lodder Patterned Nanomagnetic Films , 2006 .

[6]  Raúl Rojas Encyclopedia of computers and computer history , 2001 .

[7]  Mark L. Schattenburg,et al.  Optically matched trilevel resist process for nanostructure fabrication , 1995 .

[8]  S. Fujimori Computer simulation of exposure and development of a positive photoresist , 1979 .

[9]  E. Wassermann,et al.  Fabrication of large scale periodic magnetic nanostructures , 1998 .

[10]  Mark L. Schattenburg,et al.  Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist , 1999 .

[11]  Mark L. Schattenburg,et al.  Achromatic interferometric lithography for 100‐nm‐period gratings and grids , 1995 .

[12]  Leon Abelmann,et al.  Fabrication of patterned magnetic nanodots by laser interference lithography , 2005 .

[13]  Elmar Platzgummer,et al.  Ion projection direct structuring for patterning of magnetic media , 2002 .

[14]  Miko Elwenspoek,et al.  Capillary filling speed of water in nanochannels , 2004 .

[15]  A. Hozoi Edge effects and submicron tracks in magnetic tape recording , 2005 .

[16]  Hiroshi Yasaka,et al.  1.3-V/sub pp/ push-pull drive InP Mach-Zehnder modulator module for 40 Gbit/s operation , 2005 .

[17]  P. Gaunt Magnetic viscosity and thermal activation energy , 1986 .

[18]  S. K. Case,et al.  Optical elements with ultrahigh spatial-frequency surface corrugations. , 1983, Applied optics.

[19]  Eric D. Daniel,et al.  Magnetic recording : the first 100 years , 1999 .

[20]  R. Atkinson,et al.  Fundamental optical and magneto-optical constants of Co/Pt and CoNi/Pt multilayered films , 1996 .

[21]  H. Tran Materials for advanced microlithography: polymers for 157 nm lithography and acid diffusion measurements , 2002 .

[22]  J. Lodder,et al.  Effects of Pt seed layer and Ar pressure on magnetic and structural properties of sputtered CoNi/Pt multilayers , 1996 .

[23]  Dominique Givord,et al.  Beating the superparamagnetic limit with exchange bias , 2003, Nature.

[24]  T. Devolder,et al.  Planar patterned magnetic media obtained by ion irradiation , 1998, Science.

[25]  Ji Shi,et al.  The interaction between platinum films and silicon substrates: Effects of substrate bias during sputtering deposition , 2000 .

[26]  D. Jiles Introduction to Magnetism and Magnetic Materials , 2015 .

[27]  S. Charap,et al.  Thermal stability of recorded information at high densities , 1996 .

[28]  E. Costard,et al.  Fabrication of a 2D photonic bandgap by a holographic method , 1997 .

[29]  Jian-Gang Zhu,et al.  New heights for hard disk drives , 2003 .

[30]  Margaret Evans Best,et al.  Nanoscale patterning of magnetic islands by imprint lithography using a flexible mold , 2002 .

[31]  R. Victora,et al.  Predicted time dependence of the switching field for magnetic materials. , 1989, Physical review letters.

[32]  Henry I. Smith,et al.  Holographic lithography with thick photoresist , 1983 .

[33]  C. Canali,et al.  Pt2Si and PtSi formation with high‐purity Pt thin films , 1977 .

[34]  Masud Mansuripur,et al.  The Physical Principles of Magneto-optical Recording , 1995 .

[35]  T. Kubo,et al.  Electromagnetic Fields , 2008 .

[36]  Satoshi Okamoto,et al.  Sensitive detection of irreversible switching in a single FePt nanosized dot , 2003 .

[37]  E. Wohlfarth,et al.  A mechanism of magnetic hysteresis in heterogeneous alloys , 1948, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[38]  Margaret Evans Best,et al.  Recording performance of high-density patterned perpendicular magnetic media , 2002 .

[39]  C. Vieu,et al.  Fabrication of high density nanostructures gratings (>500Gbit/in2) used as molds for nanoimprint lithography , 2000 .

[40]  R. M. de Ridder,et al.  DESIGN OF PHOTONIC CRYSTAL SLAB STRUCTURES WITH ABSOLUTE GAPS IN GUIDED MODES , 2002 .

[41]  C. Lodder,et al.  CoxNi(1-x)/Pt multilayers for magneto-optical recording , 1993 .