Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy
暂无分享,去创建一个
J. Prieto | P. Brown | K. Stassun | Wei Zheng | B. Gaudi | C. Kochanek | M. Stritzinger | G. Hosseinzadeh | S. Valenti | T. Holoien | A. Filippenko | E. Cappellaro | S. Benetti | B. Shappee | K. Stanek | S. Dong | E. Falco | R. Koff | G. Herczeg | E. Hsiao | C. Ashall | C. Gall | S. Mattila | S. Prentice | T. Thompson | D. Grupe | A. Pastorello | N. Elias-Rosa | M. Stritzinger | T. D. Jaeger | M. W. Lau | J. Mauerhan | P. Ochner | S. Villanueva | J. Woo | R. Beswick | R. Rudy | T. Reynolds | M. Fraser | P. Lundqvist | L. Tomasella | Ping Chen | A. Somero | Shaoming Hu | D. Pooley | R. Mutel | T. Brink | R. Post | J. Hestenes | B. Jeffers | Sahana Kumar | S. Yunus | S. Bose | S. Davis | M. Shahbandeh | C. Romero-Cañizales | Zheng Cai | Shin Jaejin | A. Kurtenkov | S. Hu | Shaoming Hu | P. Brown | Sameen Yunus | Benjamin T. Jeffers | A. Filippenko
[1] Mauricio Solar,et al. Astronomical data analysis software and systems , 2018, Astron. Comput..
[2] D. Malesani,et al. Cosmic evolution and metal aversion in superluminous supernova host galaxies , 2016, 1612.05978.
[3] David O. Jones,et al. Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.
[4] E. Berger,et al. The Superluminous Supernova SN 2017egm in the Nearby Galaxy NGC 3191: A Metal-rich Environment Can Support a Typical SLSN Evolution , 2017, 1706.08517.
[5] D. Malesani,et al. Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope , 2017, 1702.05494.
[6] E. Cappellaro,et al. Gaia16apd – a link between fast and slowly declining type I superluminous supernovae , 2016, 1611.10207.
[7] R. Kotak,et al. The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system , 2016, 1611.09910.
[8] D. Bersier,et al. The ASAS-SN Bright Supernova Catalog – II. 2015 , 2016, 1704.02320.
[9] E. Berger,et al. X-Rays from the Location of the Double-humped Transient ASASSN-15lh , 2016, The Astrophysical journal.
[10] M. Sullivan,et al. The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole , 2016, Nature Astronomy.
[11] Keivan G. Stassun,et al. The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.
[12] S. Smartt,et al. Superluminous supernova progenitors have a half-solar metallicity threshold , 2016, 1605.04925.
[13] M. Sullivan,et al. The volumetric rate of superluminous supernovae at z ∼ 1 , 2016, 1605.05250.
[14] J. Prieto,et al. The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh , 2016, 1605.00645.
[15] G Risaliti,et al. Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C , 2016, The Astrophysical journal.
[16] F. Bianco,et al. Analyzing the Largest Spectroscopic Data Set of Hydrogen-poor Super-luminous Supernovae , 2016, 1612.07321.
[17] E. Ofek,et al. Two New Calcium-rich Gap Transients in Group and Cluster Environments , 2016, 1612.00454.
[18] E. Ofek,et al. Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia16apd , 2016, 1611.02782.
[19] Keivan G. Stassun,et al. DEdicated MONitor of EXotransits and Transients (DEMONEXT): a low-cost robotic and automated telescope for followup of exoplanetary transits and other transient events , 2016, Astronomical Telescopes + Instrumentation.
[20] S. Smartt,et al. SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY , 2016, 1607.02353.
[21] David O. Jones,et al. PS1-14bj: A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA WITH A LONG RISE AND SLOW DECAY , 2016, 1605.05235.
[22] P. Brown,et al. ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE , 2016, 1605.03951.
[23] P. Vreeswijk,et al. HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.
[24] K. Maguire,et al. SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.
[25] A. Fruchter,et al. A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae , 2016, 1601.01874.
[26] S. Smartt,et al. Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves , 2015, 1511.03740.
[27] D. Bersier,et al. ASASSN-15lh: A highly super-luminous supernova , 2015, Science.
[28] A. B. Danilet,et al. Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.
[29] D. Malesani,et al. POLARIMETRY OF THE SUPERLUMINOUS SUPERNOVA LSQ14MO: NO EVIDENCE FOR SIGNIFICANT DEVIATIONS FROM SPHERICAL SYMMETRY , 2015, 1511.04522.
[30] K. Nomoto,et al. TYPE I SUPERLUMINOUS SUPERNOVAE AS EXPLOSIONS INSIDE NON-HYDROGEN CIRCUMSTELLAR ENVELOPES , 2015, 1510.00834.
[31] J. Wang,et al. THE MOST LUMINOUS SUPERNOVA ASASSN-15LH: SIGNATURE OF A NEWBORN RAPIDLY ROTATING STRANGE QUARK STAR , 2015, 1508.07745.
[32] Paul S. Smith,et al. Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion , 2015, 1506.08844.
[33] M. Sullivan,et al. LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE , 2015, 1505.01078.
[34] K. Maguire,et al. On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.
[35] C. A. Oxborrow,et al. Planck2015 results , 2015, Astronomy & Astrophysics.
[36] D. Malesani,et al. Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.
[37] R. Kotak,et al. Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 medium deep survey , 2014, 1402.1631.
[38] David O. Jones,et al. ZOOMING IN ON THE PROGENITORS OF SUPERLUMINOUS SUPERNOVAE WITH THE HST , 2014, 1411.1060.
[39] S. Smartt,et al. SUPERLUMINOUS SUPERNOVAE AS STANDARDIZABLE CANDLES AND HIGH-REDSHIFT DISTANCE PROBES , 2014, 1409.4429.
[40] Iain A. Steele,et al. SPRAT: Spectrograph for the Rapid Acquisition of Transients , 2014, Astronomical Telescopes and Instrumentation.
[41] Paul S. Smith,et al. Multi-epoch spectropolarimetry of SN 2009ip: direct evidence for aspherical circumstellar material , 2014, 1403.4240.
[42] J. Granot,et al. Radio limits on off-axis GRB afterglows and VLBI observations of SN 2003gk , 2013, 1310.7171.
[43] W. M. Wood-Vasey,et al. The superluminous supernova PS1-11ap: bridging the gap between low and high redshift , 2013, 1310.4417.
[44] Pekka Teerikorpi,et al. Interstellar polarization at high galactic latitudes from distant stars - VIII. Patterns related to the local dust and gas shells from observations of ~3600 stars , 2014 .
[45] S. Smartt,et al. HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.
[46] A. Pastorello,et al. Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.
[47] J. Prieto,et al. THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.
[48] E. Pian,et al. THE SIGNATURE OF THE CENTRAL ENGINE IN THE WEAKEST RELATIVISTIC EXPLOSIONS: GRB 100316D , 2013, 1308.1687.
[49] Prasanth H. Nair,et al. Astropy: A community Python package for astronomy , 2013, 1307.6212.
[50] J. Wheeler,et al. ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: χ2-MINIMIZATION OF PARAMETER FITS , 2013, 1306.3447.
[51] A. Pastorello,et al. SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.
[52] S. Smartt,et al. PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY , 2013, 1303.1531.
[53] J. Wheeler,et al. Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.
[54] J. Prieto,et al. PROBING THE LOW-REDSHIFT STAR FORMATION RATE AS A FUNCTION OF METALLICITY THROUGH THE LOCAL ENVIRONMENTS OF TYPE II SUPERNOVAE , 2012, 1205.2338.
[55] R. Kotak,et al. THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION , 2012, 1210.4027.
[56] A. Gal-yam. Luminous Supernovae , 2012, Science.
[57] A. Gal-yam,et al. WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.
[58] L. Ho,et al. Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.
[59] R. Kirshner,et al. CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.
[60] V. Dwarkadas,et al. What are published X-ray light curves telling us about young supernova expansion? , 2011, 1109.2616.
[61] I. A. Steele,et al. A fully automated data reduction pipeline for the FRODOSpec integral field spectrograph , 2011, 1112.2574.
[62] G. Kauffmann,et al. The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.
[63] J. Prieto,et al. SN 2010jl IN UGC 5189: YET ANOTHER LUMINOUS TYPE IIn SUPERNOVA IN A METAL-POOR GALAXY , 2010, 1012.3461.
[64] E. O. Ofek,et al. Hydrogen-poor superluminous stellar explosions , 2009, Nature.
[65] D. Finkbeiner,et al. Measuring Reddening with SDSS Stellar Spectra , 2011 .
[66] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[67] Las Cumbres Observatory Global Telescope Network,et al. ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.
[68] Ryan Chornock,et al. Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.
[69] Lars Bildsten,et al. SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.
[70] S. Woosley. BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.
[71] S. Barthelmy,et al. A relativistic type Ibc supernova without a detected γ-ray burst , 2009, Nature.
[72] M. Asplund,et al. The chemical composition of the Sun , 2009, 0909.0948.
[73] Ernest E. Croner,et al. The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.
[74] Garth D. Illingworth,et al. AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.
[75] L. Kewley,et al. Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.
[76] John F. Beacom,et al. Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals , 2007, 0707.0690.
[77] D. A. S. Chlegel,et al. THE ORIGIN OF THE MASS–METALLICITY RELATION: INSIGHTS FROM 53,000 STAR-FORMING GALAXIES IN THE SDSS , 2008 .
[78] S. Woosley,et al. Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.
[79] Robert M. Quimby,et al. SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.
[80] J. Tonry,et al. Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.
[81] P. B. Cameron,et al. Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.
[82] R. Maiolino,et al. Gas metallicity diagnostics in star-forming galaxies , 2006, astro-ph/0603580.
[83] M. Skrutskie,et al. The Two Micron All Sky Survey (2MASS) , 2006 .
[84] W. B. Burton,et al. The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.
[85] S. E. Persson,et al. The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425 , 2004, Nature.
[86] J. Brinkmann,et al. The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.
[87] Alan A. Wells,et al. The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.
[88] M. Pettini,et al. [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.
[89] Richard M. Ambrosi,et al. Readout modes and automated operation of the Swift X-ray Telescope , 2003, SPIE Optics + Photonics.
[90] Peter W. A. Roming,et al. The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.
[91] D. Watson,et al. The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.
[92] G. Bruzual,et al. Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.
[93] G. Chabrier. Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.
[94] John T. Rayner,et al. SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .
[95] E. Ofek,et al. Orphan Gamma-Ray Burst Radio Afterglows: Candidates and Constraints on Beaming , 2002, astro-ph/0203262.
[96] D. Kasen,et al. Direct Analysis of Spectra of Type Ib Supernovae , 1999, astro-ph/0106367.
[97] D. Branch,et al. ON THE SPECTRUM AND NATURE OF THE PECULIAR TYPE IA SUPERNOVA 1991T , 1998, astro-ph/9807032.
[98] M. C. Begam,et al. An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.
[99] M. C. Begam,et al. Discovery of the peculiar supernova 1998bw in the error box of GRB 980425 , 1998, astro-ph/9806175.
[100] D. Fabricant,et al. The FAST Spectrograph for the Tillinghast Telescope , 1998 .
[101] P. Nugent,et al. Evidence for a High-Velocity Carbon-rich Layer in the Type Ia SN 1990N , 1997 .
[102] Richard L. White,et al. The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .
[103] P. Schechter,et al. DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .
[104] D. Burrows,et al. Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .
[105] Philip Massey,et al. The Kitt Peak spectrophotometric standards : extension to 1 micron , 1990 .
[106] Keith A. Arnaud,et al. EXOSAT observations of a strong soft X-ray excess in MKN 841. , 1985 .
[107] A. V. Filippenko,et al. THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .
[108] D. S. Mathewson,et al. Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .
[109] P. Bodenheimer,et al. Do Pulsars Make Supernovae? 11. Calculations of Light Curves for Type 11 Events , 1974 .
[110] Z. Barkat,et al. DYNAMICS OF SUPERNOVA EXPLOSION RESULTING FROM PAIR FORMATION. , 1967 .