Gaia17biu/SN 2017egm in NGC 3191: The Closest Hydrogen-poor Superluminous Supernova to Date Is in a “Normal,” Massive, Metal-rich Spiral Galaxy

Hydrogen-poor superluminous supernovae (SLSNe-I) have been predominantly found in low-metallicity, star-forming dwarf galaxies. Here we identify Gaia17biu/SN 2017egm as an SLSN-I occurring in a “normal” spiral galaxy (NGC 3191) in terms of stellar mass (several times 1010 M⊙) and metallicity (roughly solar). At redshift z = 0.031, Gaia17biu is also the lowest-redshift SLSN-I to date, and the absence of a larger population of SLSNe-I in dwarf galaxies of similar redshift suggests that metallicity is likely less important to the production of SLSNe-I than previously believed. With the smallest distance and highest apparent brightness for an SLSN-I, we are able to study Gaia17biu in unprecedented detail. Its pre-peak near-ultraviolet to optical color is similar to that of Gaia16apd and among the bluest observed for an SLSN-I, while its peak luminosity (Mg = −21 mag) is substantially lower than that of Gaia16apd. Thanks to the high signal-to-noise ratios of our spectra, we identify several new spectroscopic features that may help to probe the properties of these enigmatic explosions. We detect polarization at the ∼0.5% level that is not strongly dependent on wavelength, suggesting a modest, global departure from spherical symmetry. In addition, we put the tightest upper limit yet on the radio luminosity of an SLSN-I with <5.4 × 1026 erg s−1 Hz−1 at 10 GHz, which is almost a factor of 40 better than previous upper limits and one of the few measured at an early stage in the evolution of an SLSN-I. This limit largely rules out an association of this SLSN-I with known populations of gamma-ray-burst-like central engines.

[1]  Mauricio Solar,et al.  Astronomical data analysis software and systems , 2018, Astron. Comput..

[2]  D. Malesani,et al.  Cosmic evolution and metal aversion in superluminous supernova host galaxies , 2016, 1612.05978.

[3]  David O. Jones,et al.  Hydrogen-poor Superluminous Supernovae from the Pan-STARRS1 Medium Deep Survey , 2017, 1708.01619.

[4]  E. Berger,et al.  The Superluminous Supernova SN 2017egm in the Nearby Galaxy NGC 3191: A Metal-rich Environment Can Support a Typical SLSN Evolution , 2017, 1706.08517.

[5]  D. Malesani,et al.  Time-resolved Polarimetry of the Superluminous SN 2015bn with the Nordic Optical Telescope , 2017, 1702.05494.

[6]  E. Cappellaro,et al.  Gaia16apd – a link between fast and slowly declining type I superluminous supernovae , 2016, 1611.10207.

[7]  R. Kotak,et al.  The evolution of superluminous supernova LSQ14mo and its interacting host galaxy system , 2016, 1611.09910.

[8]  D. Bersier,et al.  The ASAS-SN Bright Supernova Catalog – II. 2015 , 2016, 1704.02320.

[9]  E. Berger,et al.  X-Rays from the Location of the Double-humped Transient ASASSN-15lh , 2016, The Astrophysical journal.

[10]  M. Sullivan,et al.  The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole , 2016, Nature Astronomy.

[11]  Keivan G. Stassun,et al.  The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory , 2016, 1608.02013.

[12]  S. Smartt,et al.  Superluminous supernova progenitors have a half-solar metallicity threshold , 2016, 1605.04925.

[13]  M. Sullivan,et al.  The volumetric rate of superluminous supernovae at z ∼ 1 , 2016, 1605.05250.

[14]  J. Prieto,et al.  The unexpected, long-lasting, UV rebrightening of the superluminous supernova ASASSN-15lh , 2016, 1605.00645.

[15]  G Risaliti,et al.  Ejection of the Massive Hydrogen-rich Envelope Timed with the Collapse of the Stripped SN 2014C , 2016, The Astrophysical journal.

[16]  F. Bianco,et al.  Analyzing the Largest Spectroscopic Data Set of Hydrogen-poor Super-luminous Supernovae , 2016, 1612.07321.

[17]  E. Ofek,et al.  Two New Calcium-rich Gap Transients in Group and Cluster Environments , 2016, 1612.00454.

[18]  E. Ofek,et al.  Far-ultraviolet to Near-infrared Spectroscopy of a Nearby Hydrogen-poor Superluminous Supernova Gaia16apd , 2016, 1611.02782.

[19]  Keivan G. Stassun,et al.  DEdicated MONitor of EXotransits and Transients (DEMONEXT): a low-cost robotic and automated telescope for followup of exoplanetary transits and other transient events , 2016, Astronomical Telescopes + Instrumentation.

[20]  S. Smartt,et al.  SPECTROPOLARIMETRY OF SUPERLUMINOUS SUPERNOVAE: INSIGHT INTO THEIR GEOMETRY , 2016, 1607.02353.

[21]  David O. Jones,et al.  PS1-14bj: A HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA WITH A LONG RISE AND SLOW DECAY , 2016, 1605.05235.

[22]  P. Brown,et al.  ASASSN-15LH: A SUPERLUMINOUS ULTRAVIOLET REBRIGHTENING OBSERVED BY SWIFT AND HUBBLE , 2016, 1605.03951.

[23]  P. Vreeswijk,et al.  HOST-GALAXY PROPERTIES OF 32 LOW-REDSHIFT SUPERLUMINOUS SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY , 2016, 1604.08207.

[24]  K. Maguire,et al.  SN 2015bn: A DETAILED MULTI-WAVELENGTH VIEW OF A NEARBY SUPERLUMINOUS SUPERNOVA , 2016, 1603.04748.

[25]  A. Fruchter,et al.  A Hubble Space Telescope survey of the host galaxies of Superluminous Supernovae , 2016, 1601.01874.

[26]  S. Smartt,et al.  Seeing double: the frequency and detectability of double-peaked superluminous supernova light curves , 2015, 1511.03740.

[27]  D. Bersier,et al.  ASASSN-15lh: A highly super-luminous supernova , 2015, Science.

[28]  A. B. Danilet,et al.  Six months of multiwavelength follow-up of the tidal disruption candidate asassn-14li and implied tde rates from asas-sn , 2015, 1507.01598.

[29]  D. Malesani,et al.  POLARIMETRY OF THE SUPERLUMINOUS SUPERNOVA LSQ14MO: NO EVIDENCE FOR SIGNIFICANT DEVIATIONS FROM SPHERICAL SYMMETRY , 2015, 1511.04522.

[30]  K. Nomoto,et al.  TYPE I SUPERLUMINOUS SUPERNOVAE AS EXPLOSIONS INSIDE NON-HYDROGEN CIRCUMSTELLAR ENVELOPES , 2015, 1510.00834.

[31]  J. Wang,et al.  THE MOST LUMINOUS SUPERNOVA ASASSN-15LH: SIGNATURE OF A NEWBORN RAPIDLY ROTATING STRANGE QUARK STAR , 2015, 1508.07745.

[32]  Paul S. Smith,et al.  Spectropolarimetry of SN 2011dh in M51: geometric insights on a Type IIb supernova progenitor and explosion , 2015, 1506.08844.

[33]  M. Sullivan,et al.  LSQ14bdq: A TYPE Ic SUPER-LUMINOUS SUPERNOVA WITH A DOUBLE-PEAKED LIGHT CURVE , 2015, 1505.01078.

[34]  K. Maguire,et al.  On the diversity of superluminous supernovae: ejected mass as the dominant factor , 2015, 1503.03310.

[35]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy &amp; Astrophysics.

[36]  D. Malesani,et al.  Spectroscopy of superluminous supernova host galaxies. A preference of hydrogen-poor events for extreme emission line galaxies , 2014, 1409.8331.

[37]  R. Kotak,et al.  Selecting superluminous supernovae in faint galaxies from the first year of the Pan-STARRS1 medium deep survey , 2014, 1402.1631.

[38]  David O. Jones,et al.  ZOOMING IN ON THE PROGENITORS OF SUPERLUMINOUS SUPERNOVAE WITH THE HST , 2014, 1411.1060.

[39]  S. Smartt,et al.  SUPERLUMINOUS SUPERNOVAE AS STANDARDIZABLE CANDLES AND HIGH-REDSHIFT DISTANCE PROBES , 2014, 1409.4429.

[40]  Iain A. Steele,et al.  SPRAT: Spectrograph for the Rapid Acquisition of Transients , 2014, Astronomical Telescopes and Instrumentation.

[41]  Paul S. Smith,et al.  Multi-epoch spectropolarimetry of SN 2009ip: direct evidence for aspherical circumstellar material , 2014, 1403.4240.

[42]  J. Granot,et al.  Radio limits on off-axis GRB afterglows and VLBI observations of SN 2003gk , 2013, 1310.7171.

[43]  W. M. Wood-Vasey,et al.  The superluminous supernova PS1-11ap: bridging the gap between low and high redshift , 2013, 1310.4417.

[44]  Pekka Teerikorpi,et al.  Interstellar polarization at high galactic latitudes from distant stars - VIII. Patterns related to the local dust and gas shells from observations of ~3600 stars , 2014 .

[45]  S. Smartt,et al.  HYDROGEN-POOR SUPERLUMINOUS SUPERNOVAE AND LONG-DURATION GAMMA-RAY BURSTS HAVE SIMILAR HOST GALAXIES , 2013, 1311.0026.

[46]  A. Pastorello,et al.  Slowly fading super-luminous supernovae that are not pair-instability explosions , 2013, Nature.

[47]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[48]  E. Pian,et al.  THE SIGNATURE OF THE CENTRAL ENGINE IN THE WEAKEST RELATIVISTIC EXPLOSIONS: GRB 100316D , 2013, 1308.1687.

[49]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[50]  J. Wheeler,et al.  ANALYTICAL LIGHT CURVE MODELS OF SUPERLUMINOUS SUPERNOVAE: χ2-MINIMIZATION OF PARAMETER FITS , 2013, 1306.3447.

[51]  A. Pastorello,et al.  SUPER-LUMINOUS TYPE Ic SUPERNOVAE: CATCHING A MAGNETAR BY THE TAIL , 2013, 1304.3320.

[52]  S. Smartt,et al.  PS1-10bzj: A FAST, HYDROGEN-POOR SUPERLUMINOUS SUPERNOVA IN A METAL-POOR HOST GALAXY , 2013, 1303.1531.

[53]  J. Wheeler,et al.  Rates of superluminous supernovae at z ∼ 0.2 , 2013, 1302.0911.

[54]  J. Prieto,et al.  PROBING THE LOW-REDSHIFT STAR FORMATION RATE AS A FUNCTION OF METALLICITY THROUGH THE LOCAL ENVIRONMENTS OF TYPE II SUPERNOVAE , 2012, 1205.2338.

[55]  R. Kotak,et al.  THE HOST GALAXY OF THE SUPER-LUMINOUS SN 2010gx AND LIMITS ON EXPLOSIVE 56Ni PRODUCTION , 2012, 1210.4027.

[56]  A. Gal-yam Luminous Supernovae , 2012, Science.

[57]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[58]  L. Ho,et al.  Berkeley Supernova Ia Program – I. Observations, data reduction and spectroscopic sample of 582 low-redshift Type Ia supernovae , 2012, 1202.2128.

[59]  R. Kirshner,et al.  CORE-COLLAPSE SUPERNOVAE AND HOST GALAXY STELLAR POPULATIONS , 2011, 1110.1377.

[60]  V. Dwarkadas,et al.  What are published X-ray light curves telling us about young supernova expansion? , 2011, 1109.2616.

[61]  I. A. Steele,et al.  A fully automated data reduction pipeline for the FRODOSpec integral field spectrograph , 2011, 1112.2574.

[62]  G. Kauffmann,et al.  The relation between metallicity, stellar mass and star formation in galaxies: an analysis of observational and model data , 2011, 1107.3145.

[63]  J. Prieto,et al.  SN 2010jl IN UGC 5189: YET ANOTHER LUMINOUS TYPE IIn SUPERNOVA IN A METAL-POOR GALAXY , 2010, 1012.3461.

[64]  E. O. Ofek,et al.  Hydrogen-poor superluminous stellar explosions , 2009, Nature.

[65]  D. Finkbeiner,et al.  Measuring Reddening with SDSS Stellar Spectra , 2011 .

[66]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[67]  Las Cumbres Observatory Global Telescope Network,et al.  ULTRA-BRIGHT OPTICAL TRANSIENTS ARE LINKED WITH TYPE Ic SUPERNOVAE , 2010, 1008.2674.

[68]  Ryan Chornock,et al.  Nearby supernova rates from the Lick Observatory Supernova Search – I. The methods and data base , 2010, 1006.4611.

[69]  Lars Bildsten,et al.  SUPERNOVA LIGHT CURVES POWERED BY YOUNG MAGNETARS , 2009, 0911.0680.

[70]  S. Woosley BRIGHT SUPERNOVAE FROM MAGNETAR BIRTH , 2009, 0911.0698.

[71]  S. Barthelmy,et al.  A relativistic type Ibc supernova without a detected γ-ray burst , 2009, Nature.

[72]  M. Asplund,et al.  The chemical composition of the Sun , 2009, 0909.0948.

[73]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[74]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[75]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[76]  John F. Beacom,et al.  Characterizing Supernova Progenitors via the Metallicities of their Host Galaxies, from Poor Dwarfs to Rich Spirals , 2007, 0707.0690.

[77]  D. A. S. Chlegel,et al.  THE ORIGIN OF THE MASS–METALLICITY RELATION: INSIGHTS FROM 53,000 STAR-FORMING GALAXIES IN THE SDSS , 2008 .

[78]  S. Woosley,et al.  Pulsational pair instability as an explanation for the most luminous supernovae , 2007, Nature.

[79]  Robert M. Quimby,et al.  SN 2005ap: A Most Brilliant Explosion , 2007, 0709.0302.

[80]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[81]  P. B. Cameron,et al.  Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions , 2006, Nature.

[82]  R. Maiolino,et al.  Gas metallicity diagnostics in star-forming galaxies , 2006, astro-ph/0603580.

[83]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[84]  W. B. Burton,et al.  The Leiden/Argentine/Bonn (LAB) Survey of Galactic HI - Final data release of the combined LDS and IAR surveys with improved stray-radiation corrections , 2005, astro-ph/0504140.

[85]  S. E. Persson,et al.  The sub-energetic γ-ray burst GRB 031203 as a cosmic analogue to the nearby GRB 980425 , 2004, Nature.

[86]  J. Brinkmann,et al.  The Origin of the Mass-Metallicity Relation: Insights from 53,000 Star-forming Galaxies in the Sloan Digital Sky Survey , 2004, astro-ph/0405537.

[87]  Alan A. Wells,et al.  The Swift Gamma-Ray Burst Mission , 2004, astro-ph/0405233.

[88]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[89]  Richard M. Ambrosi,et al.  Readout modes and automated operation of the Swift X-ray Telescope , 2003, SPIE Optics + Photonics.

[90]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[91]  D. Watson,et al.  The Swift X-Ray Telescope , 1999, SPIE Optics + Photonics.

[92]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[93]  G. Chabrier Galactic Stellar and Substellar Initial Mass Function , 2003, astro-ph/0304382.

[94]  John T. Rayner,et al.  SpeX: A Medium‐Resolution 0.8–5.5 Micron Spectrograph and Imager for the NASA Infrared Telescope Facility , 2003 .

[95]  E. Ofek,et al.  Orphan Gamma-Ray Burst Radio Afterglows: Candidates and Constraints on Beaming , 2002, astro-ph/0203262.

[96]  D. Kasen,et al.  Direct Analysis of Spectra of Type Ib Supernovae , 1999, astro-ph/0106367.

[97]  D. Branch,et al.  ON THE SPECTRUM AND NATURE OF THE PECULIAR TYPE IA SUPERNOVA 1991T , 1998, astro-ph/9807032.

[98]  M. C. Begam,et al.  An unusual supernova in the error box of the γ-ray burst of 25 April 1998 , 1998, Nature.

[99]  M. C. Begam,et al.  Discovery of the peculiar supernova 1998bw in the error box of GRB 980425 , 1998, astro-ph/9806175.

[100]  D. Fabricant,et al.  The FAST Spectrograph for the Tillinghast Telescope , 1998 .

[101]  P. Nugent,et al.  Evidence for a High-Velocity Carbon-rich Layer in the Type Ia SN 1990N , 1997 .

[102]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[103]  P. Schechter,et al.  DOPHOT, A CCD PHOTOMETRY PROGRAM: DESCRIPTION AND TESTS , 1993 .

[104]  D. Burrows,et al.  Determination of Confidence Limits for Experiments with Low Numbers of Counts , 1991 .

[105]  Philip Massey,et al.  The Kitt Peak spectrophotometric standards : extension to 1 micron , 1990 .

[106]  Keith A. Arnaud,et al.  EXOSAT observations of a strong soft X-ray excess in MKN 841. , 1985 .

[107]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[108]  D. S. Mathewson,et al.  Wavelength dependence of interstellar polarization and ratio of total to selective extinction. , 1975 .

[109]  P. Bodenheimer,et al.  Do Pulsars Make Supernovae? 11. Calculations of Light Curves for Type 11 Events , 1974 .

[110]  Z. Barkat,et al.  DYNAMICS OF SUPERNOVA EXPLOSION RESULTING FROM PAIR FORMATION. , 1967 .