Coupling of Point Collocation Meshfree Method and FEM for EEG Forward Solver

For solving electroencephalographic forward problem, coupled method of finite element method (FEM) and fast moving least square reproducing kernel method (FMLSRKM) which is a kind of meshfree method is proposed. Current source modeling for FEM is complicated, so source region is analyzed using meshfree method. First order of shape function is used for FEM and second order for FMLSRKM because FMLSRKM adopts point collocation scheme. Suggested method is tested using simple equation using 1-, 2-, and 3-dimensional models, and error tendency according to node distance is studied. In addition, electroencephalographic forward problem is solved using spherical head model. Proposed hybrid method can produce well-approximated solution.

[1]  R. Leahy,et al.  EEG and MEG: forward solutions for inverse methods , 1999, IEEE Transactions on Biomedical Engineering.

[2]  Richard M. Leahy,et al.  Electromagnetic brain mapping , 2001, IEEE Signal Process. Mag..

[3]  Bart Vanrumste,et al.  Review on solving the forward problem in EEG source analysis , 2007, Journal of NeuroEngineering and Rehabilitation.

[4]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations IV , 2005 .

[5]  Z. Zhang,et al.  A fast method to compute surface potentials generated by dipoles within multilayer anisotropic spheres. , 1995, Physics in medicine and biology.

[6]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[7]  Chany Lee,et al.  A Posteriori Error Estimation and Adaptive Node Refinement for Fast Moving Least Square Reproducing Kernel (FMLSRK) Method , 2007 .

[8]  R C Mesquita,et al.  A Meshless Local Petrov–Galerkin Method for Three-Dimensional Scalar Problems , 2011, IEEE Transactions on Magnetics.

[9]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[10]  Sharif Rahman,et al.  A coupled meshless-finite element method for fracture analysis of cracks , 2001 .

[11]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations , 2002 .

[12]  Chany Lee,et al.  Point Collocation Mesh-Free Method Using FMLSRKM for Solving Axisymmetric Laplace Equation , 2008, IEEE Transactions on Magnetics.

[13]  A. Dale,et al.  Improved Localizadon of Cortical Activity by Combining EEG and MEG with MRI Cortical Surface Reconstruction: A Linear Approach , 1993, Journal of Cognitive Neuroscience.

[14]  Jie Tian,et al.  A source reconstruction algorithm based on adaptive hp-FEM for bioluminescence tomography. , 2009, Optics express.

[15]  Yongsik Kim,et al.  Point collocation methods using the fast moving least‐square reproducing kernel approximation , 2003 .

[16]  Timon Rabczuk,et al.  Coupling of mesh‐free methods with finite elements: basic concepts and test results , 2006 .

[17]  Soo Yeol Lee,et al.  Precise Estimation of Brain Electrical Sources Using Anatomically Constrained Area Source (ACAS) Localization , 2007, IEEE Transactions on Magnetics.

[18]  Marc Duflot,et al.  Meshless methods: A review and computer implementation aspects , 2008, Math. Comput. Simul..

[19]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[20]  S. Kuriki,et al.  Magnetoencephalography cortical source imaging using spherical mapping , 2005, IEEE Transactions on Magnetics.

[21]  Do Wan Kim,et al.  Point collocation method based on the FMLSRK approximation for electromagnetic field analysis , 2004, IEEE Transactions on Magnetics.

[22]  D. Wilton,et al.  Computational aspects of finite element modeling in EEG source localization , 1997, IEEE Transactions on Biomedical Engineering.

[23]  T. Rabczuk,et al.  Coupling of meshfree methods with finite elements : Basic concepts and test results , 2006 .

[24]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[25]  Ted Belytschko,et al.  Immersed particle method for fluid–structure interaction , 2009 .