Room Temperature Ammonia and Humidity Sensing Using Highly Ordered Nanoporous Alumina Films

Abstract: The effect of pore size and uniformity on the response of nanoporous alumina, formed on aluminum thick films through an anodization process, to ammonia and humidity at room temperature is reported. Pore sizes examined range from 13 nm to 48 nm, with pore size standard deviations ranging from 2.6 nm to 7.8 nm. The response of the material to ammonia and humidity is a strong function of pore size and operating frequency. At 5 kHz an alumina sensor with an average pore size of 13.6 nm, standard deviation 2.6 nm, exhibits a factor of two change in impedance magnitude as it is cycled between an ammonia and argon environment. At 5 kHz the same sensor exhibits a well-behaved change in impedance magnitude of 10 3 over 20% to 90% relative humidity. Cole-Cole plots of the 5 Hz to 13 MHz measured impedance spectra, modeled using equivalent circuits, are used to resolve the effects of adsorption and ion migration. Key words: Ammonia, Nanoporous, Impedance spectroscopy, Alumina, Humidity, Mesoporous.

[1]  Vinod Kumar Khanna,et al.  Ionic doping and inversion of the characteristic of thin film porous Al2O3 humidity sensor , 1998 .

[2]  Vasant Chabukswar,et al.  Acrylic acid doped polyaniline as an ammonia sensor , 2001 .

[3]  S. Basu,et al.  Porous ceramic sensor for measurement of gas moisture in the ppm range , 2001 .

[4]  Noboru Yamazoe,et al.  Humidity sensors: Principles and applications , 1986 .

[5]  Frank Müller,et al.  Self-organized formation of hexagonal pore arrays in anodic alumina , 1998 .

[6]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[7]  Craig A. Grimes,et al.  Design and application of a wireless, passive, resonant-circuit environmental monitoring sensor , 2001 .

[8]  Pieter L. Swart,et al.  Determination of equivalent circuit parameters of porous dielectric humidity sensors , 1992 .

[9]  A. Jonscher The Interpretation of Non‐Ideal Dielectric Admittance and Impedance Diagrams , 1975 .

[10]  Ilaria Fratoddi,et al.  Highly ethynylated polymers: synthesis and applications for humidity sensors , 2001 .

[11]  Sachiko Ono,et al.  Self‐Ordering of Cell Arrangement of Anodic Porous Alumina Formed in Sulfuric Acid Solution. , 1997 .

[12]  Enrico Traversa,et al.  Ceramic sensors for humidity detection: the state-of-the-art and future developments , 1995 .

[13]  William J. Fleming,et al.  A Physical Understanding of Solid State Humidity Sensors , 1981 .

[14]  E. Traversa Design of ceramic materials for chemical sensors with novel properties , 1995 .

[15]  S. Basu,et al.  Humidity sensor using porous tape cast alumina substrate , 2001 .

[16]  J Janata Chemical sensors. , 1990, Analytical chemistry.

[17]  G. Patermarakis,et al.  Mathematical models for the anodization conditions and structural features of porous anodic Al{sub 2}O{sub 3} films on aluminum , 1995 .

[18]  E. Traversa,et al.  Innovative Humidity Sensitive Electrical Properties of Sol‐Gel Processed Ceramic Thin Films. , 1996 .

[19]  G. L. Sharma,et al.  Effect of Li+ doping on ZrO2–TiO2 humidity sensor , 1999 .

[20]  Y. Sadaoka,et al.  Electrical properties of anodized aluminium in a humid atmosphere , 1986 .

[21]  R. Cattrall Chemical Sensors , 1997 .

[22]  Zhen-Lai Zhou,et al.  Ammonia-sensing characteristics of Pt and SiO2 doped SnO2 materials , 2001 .

[23]  Yasuhiro Shimizu,et al.  Theoretical studies on the impedance-humidity characteristics of ceramic humidity sensors , 1985 .

[24]  K. Shimizu,et al.  A Model for the Incorporation of Electrolyte Species into Anodic Alumina , 1996 .

[25]  R. K. Nahar Study of the performance degradation of thin film aluminum oxide sensor at high humidity , 2000 .

[26]  Noboru Yamazoe,et al.  Ceramic humidity sensors , 1983 .

[28]  Yoshihiko Sadaoka,et al.  Humidity sensors based on polymer thin films , 1996 .

[29]  Dao Khac An,et al.  Some investigation results of the instability of humidity sensors based on alumina and porous silicon materials , 2000 .

[30]  Yao Xi,et al.  Porosity control of humidity-sensitive ceramics and theoretical model of humidity-sensitive characteristics , 1989 .

[31]  S. Basu,et al.  Study of electrical characteristics of porous alumina sensors for detection of low moisture in gases , 2001 .

[32]  Zhi Chen,et al.  Humidity sensors with reactively evaporated Al2O3 films as porous dielectrics , 1990 .

[33]  W. S. Khokle,et al.  On the origin of the humidity-sensitive electrical properties of porous aluminium oxide (sensor application) , 1984 .

[34]  Mana Sriyudthsak,et al.  Methanol and ammonia sensing characteristics of sol–gel derived thin film gas sensor , 2000 .

[35]  A. K. Jonscher,et al.  Analysis of the alternating current properties of ionic conductors , 1978 .

[36]  R. K. Nahar,et al.  Surface conduction mechanisms and the electrical properties of Al2O3 humidity sensor , 1987 .

[37]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[38]  Augusto García-Valenzuela,et al.  Polyaniline composite coatings interrogated by a nulling optical-transmittance bridge for sensing low concentrations of ammonia gas , 2001 .

[39]  Giorgio Sberveglieri,et al.  Characterization of porous Al2O3SiO2/Si sensor for low and medium humidity ranges , 1995 .

[40]  Vinod Kumar Khanna,et al.  Effect of moisture on the dielectric properties of porous alumina films , 1984 .

[41]  Xiangqin Cui,et al.  Sensors and Actuators B , 2003 .

[42]  E. Traversa,et al.  Ceramic thin films by sol-gel processing as novel materials for integrated humidity sensors , 1996 .

[43]  B. Hwang,et al.  Sensing behaviors of the electrochemically co-deposited polypyrrole–poly(vinyl alcohol) thin film exposed to ammonia gas , 1999 .

[44]  Y. Shimizu,et al.  Desorption behavior of ammonia from TiO2-based specimens — ammonia sensing mechanism of double-layer sensors with TiO2-based catalyst layers , 2000 .

[45]  A. C. Jason,et al.  Effects of Water Vapour on the Electrical Properties of Anodized Aluminium , 1953, Nature.

[46]  T. Tseng,et al.  Electrical Properties of Porous Titania Ceramic Humidity Sensors , 1989 .

[47]  G. Sberveglieri,et al.  An Al2O3 sensor for low humidity content : characterization by impedance spectroscopy , 1996 .

[48]  Xing-qin Liu,et al.  Ammonia-sensing characteristics of Pt-doped CdSnO3 semiconducting ceramic sensor , 1996 .

[49]  Electrical humidity response of sol–Gel processed undoped and alkali-doped TiO2–Al2O3 thin films , 1999 .

[50]  O. Varghese,et al.  Studies of ambient dependent electrical behavior of nanocrystalline SnO2 thin films using impedance spectroscopy , 2000 .

[51]  Ramaier Narayanaswamy,et al.  Simultaneous determination of relative humidity and ammonia in air employing an optical fibre sensor and artificial neural network , 2001 .

[52]  C A Grimes,et al.  Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors. , 2000, Sensors and actuators. A, Physical.

[53]  Vinod Kumar Khanna,et al.  Carrier-transfer mechanisms and Al2O3 sensors for low and high humidities , 1986 .

[54]  Tzy-Kuang Lee,et al.  Sensing mechanism of a porous ceramic as humidity sensor , 1999 .

[55]  Honeywell,et al.  Humidity Sensors , 2002 .