A 94 GHz 3D Image Radar Engine With 4TX/4RX Beamforming Scan Technique in 65 nm CMOS Technology

This paper presents a fully-integrated 3D image radar engine utilizing beamforming for electrical scanning and precise ranging technique for distance measurement. Four transmitters and four receivers form a sensor frontend with phase shifters and power combiners adjusting the beam direction. A built-in 31.3 GHz clock source and a frequency tripler provide both RF carrier and counting clocks for the distance measurement. Flip-chip technique with low-temperature co-fired ceramic (LTCC) antenna design creates a miniature module as small as 6.5 × 4.4 × 0.8 cm3. Designed and fabricated in 65 nm CMOS technology, the transceiver array chip dissipates 960 mW from a 1.2-V supply and occupies chip area of 3.6 × 2.1 mm 2. This prototype achieves ±28° scanning range, 2-m maximum distance, and 1 mm depth resolution.

[1]  Sorin P. Voinigescu,et al.  A Passive W-Band Imaging Receiver in 65-nm Bulk CMOS , 2010, IEEE Journal of Solid-State Circuits.

[2]  A. Leuther,et al.  G-band metamorphic HEMT-based frequency multipliers , 2006, IEEE Transactions on Microwave Theory and Techniques.

[3]  A. Harish,et al.  Antennas and Wave Propagation , 2007 .

[4]  Ali M. Niknejad,et al.  A 94 GHz mm-Wave-to-Baseband Pulsed-Radar Transceiver with Applications in Imaging and Gesture Recognition , 2013, IEEE Journal of Solid-State Circuits.

[5]  Zheng Wang,et al.  A 93-to-113GHz BiCMOS 9-element imaging array receiver utilizing spatial-overlapping pixels with wideband phase and amplitude control , 2013, 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers.

[6]  Ullrich R. Pfeiffer,et al.  Towards 3D-imaging with low-cost SiGe-Technology at 160GHz , 2011, 2011 IEEE 9th International New Circuits and systems conference.

[7]  Jri Lee,et al.  A laser ranging radar transceiver with modulated evaluation clock in 65nm CMOS technology , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[8]  M. Skolnik,et al.  Introduction to Radar Systems , 2021, Advances in Adaptive Radar Detection and Range Estimation.

[9]  J. Powell,et al.  SiGe Receiver Front Ends for Millimeter-Wave Passive Imaging , 2008, IEEE Transactions on Microwave Theory and Techniques.

[10]  L. Yujiri,et al.  Passive Millimeter Wave Imaging , 2003, 2006 IEEE MTT-S International Microwave Symposium Digest.

[11]  J. Nissinen,et al.  Integrated Receiver Including Both Receiver Channel and TDC for a Pulsed Time-of-Flight Laser Rangefinder With cm-Level Accuracy , 2009, IEEE Journal of Solid-State Circuits.

[12]  Hartmut G. Roskos,et al.  A CMOS focal-plane array for heterodyne terahertz imaging , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[13]  M V Ivashina,et al.  An Optimal Beamforming Strategy for Wide-Field Surveys With Phased-Array-Fed Reflector Antennas , 2011, IEEE Transactions on Antennas and Propagation.

[14]  Qun Jane Gu,et al.  CMOS receivers for active and passive mm-wave imaging , 2011, IEEE Communications Magazine.

[15]  N. Llombart,et al.  Penetrating 3-D Imaging at 4- and 25-m Range Using a Submillimeter-Wave Radar , 2008, IEEE Transactions on Microwave Theory and Techniques.

[16]  D. Parker,et al.  Phased arrays - part 1: theory and architectures , 2002 .

[17]  Jri Lee,et al.  A 75-GHz Phase-Locked Loop in 90-nm CMOS Technology , 2008, IEEE Journal of Solid-State Circuits.

[18]  Jri Lee,et al.  A Fully-Integrated 77-GHz FMCW Radar Transceiver in 65-nm CMOS Technology , 2010, IEEE Journal of Solid-State Circuits.

[19]  Ali M. Niknejad,et al.  A 90 GHz Hybrid Switching Pulsed-Transmitter for Medical Imaging , 2010, IEEE Journal of Solid-State Circuits.

[20]  Adrian Tang,et al.  183GHz 13.5mW/pixel CMOS regenerative receiver for mm-wave imaging applications , 2011, 2011 IEEE International Solid-State Circuits Conference.

[21]  Arnulf Leuther,et al.  A 120–145 GHz Heterodyne Receiver Chipset Utilizing the 140 GHz Atmospheric Window for Passive Millimeter-Wave Imaging Applications , 2010, IEEE Journal of Solid-State Circuits.

[22]  Gabriel M. Rebeiz,et al.  Design and Characterization of $W$-Band SiGe RFICs for Passive Millimeter-Wave Imaging , 2010, IEEE Transactions on Microwave Theory and Techniques.

[23]  I. Mehdi,et al.  A High-Resolution Imaging Radar at 580 GHz , 2008, IEEE Microwave and Wireless Components Letters.

[24]  Vipul Jain,et al.  Design and Analysis of a W-Band SiGe Direct-Detection-Based Passive Imaging Receiver , 2011, IEEE Journal of Solid-State Circuits.

[25]  Zhiming Chen,et al.  A BiCMOS W-Band 2×2 Focal-Plane Array With On-Chip Antenna , 2012, IEEE Journal of Solid-State Circuits.

[26]  Ullrich R. Pfeiffer,et al.  A 600-GHz CMOS focal-plane array for terahertz imaging applications , 2008, ESSCIRC 2008 - 34th European Solid-State Circuits Conference.

[27]  Marianna V. Ivashina,et al.  Fast and Accurate Analysis of Reflector Antennas With Phased Array Feeds Including Multiple Reflections Between Feed and Reflector , 2014, IEEE Transactions on Antennas and Propagation.

[28]  K. F. Warnick,et al.  Beamformer Design Methods for Radio Astronomical Phased Array Feeds , 2012, IEEE Transactions on Antennas and Propagation.

[29]  Gabriel M. Rebeiz,et al.  0.13-$\mu$m CMOS Phase Shifters for X-, Ku-, and K-Band Phased Arrays , 2007, IEEE Journal of Solid-State Circuits.

[30]  Alvydas Lisauskas,et al.  A 0.65 THz Focal-Plane Array in a Quarter-Micron CMOS Process Technology , 2009, IEEE Journal of Solid-State Circuits.

[31]  D. Parker,et al.  Microwave industry outlook - defense applications , 2002 .

[32]  Lei Zhou,et al.  A W-band CMOS Receiver Chipset for Millimeter-Wave Radiometer Systems , 2011, IEEE Journal of Solid-State Circuits.

[33]  Zhiming Chen,et al.  W-Band Silicon-Based Frequency Synthesizers Using Injection-Locked and Harmonic Triplers , 2012, IEEE Transactions on Microwave Theory and Techniques.

[34]  Thomas E. Hall,et al.  Three-dimensional millimeter-wave imaging for concealed weapon detection , 2001 .

[35]  L. Q. Bui,et al.  94 GHz FMCW radar for low visibility aircraft landing system , 1991, 1991 IEEE MTT-S International Microwave Symposium Digest.