gigas , a Drosophila Homolog of Tuberous Sclerosis Gene Product-2, Regulates the Cell Cycle

[1]  B. Dickson,et al.  The Drosophila Tuberous Sclerosis Complex Gene Homologs Restrict Cell Growth and Cell Proliferation , 2001, Cell.

[2]  Tin Tin Su,et al.  Size control: Cell proliferation does not equal growth , 1998, Current Biology.

[3]  A. Wittinghofer,et al.  GTPase-activating proteins: helping hands to complement an active site. , 1998, Trends in biochemical sciences.

[4]  T. P. Neufeld,et al.  Coordination of Growth and Cell Division in the Drosophila Wing , 1998, Cell.

[5]  T. P. Neufeld,et al.  A genetic screen to identify components of the sina signaling pathway in Drosophila eye development. , 1998, Genetics.

[6]  P. Kylsten,et al.  Imaginal tissues of Drosophila melanogaster exhibit different modes of cell proliferation control. , 1997, Developmental Biology.

[7]  C. Allis,et al.  Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation , 1997, Chromosoma.

[8]  C. Lehner,et al.  Cell cycle progression, growth and patterning in imaginal discs despite inhibition of cell division after inactivation of Drosophila Cdc2 kinase. , 1997, Development.

[9]  S Povey,et al.  Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. , 1997, Science.

[10]  R. Brent,et al.  roughex down-regulates G2 cyclins in G1. , 1997, Genes & development.

[11]  S. Fan,et al.  Glued participates in distinct microtubule-based activities in Drosophila eye development. , 1997, Development.

[12]  F. Braet,et al.  Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells , 1997, Journal of microscopy.

[13]  E. Golemis,et al.  The Tuberous Sclerosis 2 Gene Product, Tuberin, Functions as a Rab5 GTPase Activating Protein (GAP) in Modulating Endocytosis* , 1997, The Journal of Biological Chemistry.

[14]  D O Morgan,et al.  Cyclin-dependent kinases: engines, clocks, and microprocessors. , 1997, Annual review of cell and developmental biology.

[15]  J. Bonifacino,et al.  Co-localization of the TSC2 product tuberin with its target Rap1 in the Golgi apparatus. , 1996, Oncogene.

[16]  K. Lewis,et al.  A P1-based physical map of the Drosophila euchromatic genome. , 1996, Genome research.

[17]  G M Rubin,et al.  A screen for genes that function downstream of Ras1 during Drosophila eye development. , 1996, Genetics.

[18]  S. Hayashi A Cdc2 dependent checkpoint maintains diploidy in Drosophila. , 1996, Development.

[19]  M. Short,et al.  Novel mutations detected in the TSC2 gene from both sporadic and familial TSC patients. , 1996, Human molecular genetics.

[20]  O. Hino,et al.  Presence of potent transcriptional activation domains in the predisposing tuberous sclerosis (Tsc2) gene product of the Eker rat model. , 1996, Cancer research.

[21]  R. Sandford,et al.  Comparative analysis and genomic structure of the tuberous sclerosis 2 (TSC2) gene in human and pufferfish. , 1996, Human Molecular Genetics.

[22]  K. Kimura,et al.  A Cdc 2 dependent checkpoint maintains diploidy in Drosophila , 1996 .

[23]  G M Rubin,et al.  Gene disruptions using P transposable elements: an integral component of the Drosophila genome project. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[24]  K. Nasmyth,et al.  S-phase-promoting cyclin-dependent kinases prevent re-replication by inhibiting the transition of replication origins to a pre-replicative state , 1995, Current Biology.

[25]  C. Lehner,et al.  Exit from mitosis is regulated by Drosophila fizzy and the sequential destruction of cyclins A, B and B3. , 1995, The EMBO journal.

[26]  B. Scheithauer,et al.  Loss of heterozygosity in the tuberous sclerosis (TSC2) region of chromosome band l6p13 occurs in sporadic as well as TSC‐associated renal angiomyolipomas , 1995, Genes, chromosomes & cancer.

[27]  J. Declue,et al.  Identification of Tuberin, the Tuberous Sclerosis-2 Product. TUBERIN POSSESSES SPECIFIC Rap1GAP ACTIVITY (*) , 1995, The Journal of Biological Chemistry.

[28]  P. O’Farrell,et al.  Qualifying for the license to replicate , 1995, Cell.

[29]  R. Fotedar,et al.  Cell cycle control of DNA replication. , 1995, Progress in cell cycle research.

[30]  E. Gateff Tumor suppressor and overgrowth suppressor genes of Drosophila melanogaster: developmental aspects. , 1994, The International journal of developmental biology.

[31]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[32]  M. Gho,et al.  The Presynaptic Cell Determines the Number of Synapses in the Drosophila Optic Ganglia , 1994, The European journal of neuroscience.

[33]  P. O’Farrell,et al.  A cell-autonomous, ubiquitous marker for the analysis of Drosophila genetic mosaics. , 1994, Developmental Biology.

[34]  S. Zipursky,et al.  Cell cycle progression in the developing Drosophila eye: roughex encodes a novel protein required for the establishment of G1 , 1994, Cell.

[35]  G. Struhl,et al.  Compartment boundarles and the control of Drosophila limb pattern by bedgebog protein , 1994 .

[36]  J. Attwood,et al.  Two loci for Tuberous Sclerosis: one on 9q34 and one on 16p13 , 1994, Annals of human genetics.

[37]  A. Green,et al.  Loss of heterozygosity on chromosome 16p13.3 in hamartomas from tuberous sclerosis patients , 1994, Nature Genetics.

[38]  S. Thomas,et al.  Identification and characterization of the tuberous sclerosis gene on chromosome 16 , 1993, Cell.

[39]  N. Perrimon,et al.  Autosomal P[ovoD1] dominant female-sterile insertions in Drosophila and their use in generating germ-line chimeras. , 1993, Development.

[40]  G. Rubin,et al.  Analysis of genetic mosaics in developing and adult Drosophila tissues. , 1993, Development.

[41]  C. Lehner,et al.  Synergistic action of Drosophila cyclins A and B during the G2‐M transition. , 1993, The EMBO journal.

[42]  M. Bate,et al.  The development of Drosophila melanogaster , 1993 .

[43]  F. McCormick,et al.  GTPase activating proteins. , 1992, Seminars in cancer biology.

[44]  H. Steller,et al.  Generation and early differentiation of glial cells in the first optic ganglion of Drosophila melanogaster. , 1992, Development.

[45]  K. White,et al.  Characterization and spatial distribution of the ELAV protein during Drosophila melanogaster development. , 1991, Journal of neurobiology.

[46]  E. Stenroos,et al.  Origin of the Neuron‐Like Cells in Tuberous Sclerosis Tissues a , 1991, Annals of the New York Academy of Sciences.

[47]  MANUEL R. GOMEZ,et al.  Phenotypes of the Tuberous Sclerosis Complex with a Revision of Diagnostic Criteria , 1991, Annals of the New York Academy of Sciences.

[48]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[49]  G. Rubin,et al.  The homeo domain protein rough is expressed in a subset of cells in the developing Drosophila eye where it can specify photoreceptor cell subtype. , 1990, Genes & development.

[50]  C. Maki,et al.  The Drosophila melanogaster RPS17 gene encoding ribosomal protein S17. , 1989, Gene.

[51]  V. Pirrotta,et al.  Developmental expression of the Drosophila zeste gene and localization of zeste protein on polytene chromosomes. , 1988, Genes & development.

[52]  L. Ayvazian Tuberous Sclerosis (Second Edition) , 1988 .

[53]  D. Ready,et al.  Cell fate in the Drosophila ommatidium. , 1987, Developmental biology.

[54]  D. Ready,et al.  Neuronal differentiation in Drosophila ommatidium. , 1987, Developmental biology.

[55]  B. Stevens,et al.  Alterations in the cell cycle of Drosophila imaginal disc cells precede metamorphosis. , 1982, Developmental biology.

[56]  G. Morata,et al.  Differential mitotic rates and patterns of growth in compartments in the Drosophila wing. , 1981, Developmental biology.

[57]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Benzer,et al.  Development of the Drosophila retina, a neurocrystalline lattice. , 1976, Developmental biology.

[59]  A. Garcı́a-Bellido,et al.  Morphogenetic mutants detected in mitotic recombination clones , 1976, Nature.