Decentralized PI Controller Design Based on Phase Margin Specifications

An effective method for design and tuning of decentralized PI controllers for stable multi-input, multi-output systems is presented in this brief. The direct Nyquist array is applied to shape the Gershgorin bands for each loop separately such that they pass through a specified point corresponding to phase margin specification that is used as a single tuning parameter. The procedure is applied on the control of a laboratory model of quadruple-tank system.

[1]  Karl Henrik Johansson,et al.  The quadruple-tank process: a multivariable laboratory process with an adjustable zero , 2000, IEEE Trans. Control. Syst. Technol..

[2]  Alireza Karimi,et al.  PID CONTROLLER DESIGN FOR MULTIVARIABLE SYSTEMS USING GERSHGORIN BANDS , 2005 .

[3]  Alexandre S. Bazanella,et al.  Tuning of Multivariable Decentralized Controllers Through the Ultimate-Point Method , 2009, IEEE Transactions on Control Systems Technology.

[4]  H. Rosenbrock,et al.  State-space and multivariable theory, , 1970 .

[5]  Hartmut Logemann,et al.  Multivariable feedback design : J. M. Maciejowski , 1991, Autom..

[6]  Tong Heng Lee,et al.  The direct Nyquist array design of PID controllers , 2000, IEEE Trans. Ind. Electron..

[7]  B M Patre,et al.  Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes. , 2012, ISA transactions.

[8]  Zalman J. Palmor,et al.  Properties and control of the quadruple-tank process with multivariable dead-times , 2010 .

[9]  Weng Khuen Ho,et al.  Tuning of PID controllers based on gain and phase margin specifications , 1995, Autom..

[10]  Ai Poh Loh,et al.  Describing function matrix for multivariable systems and its use in multiloop PI design , 1994 .

[11]  Qing-Guo Wang,et al.  Transfer function matrix approach to decoupling problem with stability , 2002, Syst. Control. Lett..

[12]  Chang-Chieh Hang,et al.  On loop phase margins of multivariable control systems , 2008 .

[13]  A. T. Shenton,et al.  Frequency-domain design of pid controllers for stable and unstable systems with time delay , 1997, Autom..

[14]  William L. Luyben,et al.  Simple method for tuning SISO controllers in multivariable systems , 1986 .

[15]  Qing-Guo Wang,et al.  PID Control for Multivariable Processes , 2008 .

[16]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[17]  Weng Khuen Ho,et al.  Tuning of Multiloop PID Controllers Based on Gain and Phase Margins Specifications , 1996 .

[18]  Qing‐Guo Wang,et al.  Non-interacting control design for multivariable industrial processes , 2003 .

[19]  Dale E. Seborg,et al.  Design of decentralized PI control systems based on Nyquist stability analysis , 2001, Proceedings of the 2001 IEEE International Conference on Control Applications (CCA'01) (Cat. No.01CH37204).

[20]  Fernando Morilla García,et al.  Tuning decentralized PID controllers for mimo systems with decouplers , 2002 .

[21]  Thomas F. Edgar,et al.  Process Dynamics and Control , 1989 .

[22]  Y. Halevi,et al.  Automatic tuning of decentralized PID controllers for TITO processes , 1993, at - Automatisierungstechnik.

[23]  Alena Kozáková,et al.  Robust Decentralized PID Controller Design , 2012 .

[24]  Chang-Chieh Hang,et al.  Autotuning of multiloop proportional-integral controllers using relay feedback , 1993 .

[25]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[26]  Edmond A. Jonckheere,et al.  Phase margins for multivariable control systems , 1990 .

[27]  Shih‐Haur Shen,et al.  Use of relay‐feedback test for automatic tuning of multivariable systems , 1994 .

[28]  W. Cai,et al.  Equivalent transfer function method for PI/PID controller design of MIMO processes , 2007 .

[29]  Weng Khuen Ho,et al.  Tuning of Multiloop Proportional−Integral−Derivative Controllers Based on Gain and Phase Margin Specifications , 1997 .

[30]  Tore Hägglund,et al.  Advanced PID Control , 2005 .