The intercomparison of selected cloud retrieval algorithms

The paper is devoted to the comparison of selected cloud retrieval algorithms. In particular, the authors compare cloud optical thickness, liquid water path and effective droplet size as obtained from the algorithms developed at the Japan Aerospace Exploration Agency (JAXA) and US National Aeronautics and Space Administration (NASA) and a new simplified cloud retrieval algorithm that is based on the analytical solutions of the radiative transfer equations valid for optically thick weakly absorbing cloud layers. Over ocean all three retrievals show very close results but differences increase for a scene over land. This is mainly caused by uncertainties due to the unknown surface albedo, especially for the semi-analytical approach that is based on measurements at 0.86 μm, where the contribution from ground is particularly large. Still, the simplified analytical retrieval technique gives results comparable with much more advanced codes.

[1]  T. Nakajima,et al.  Optimization of the Advanced Earth Observing Satellite II Global Imager channels by use of radiative transfer calculations. , 1998, Applied optics.

[2]  Teruyuki Nakajima,et al.  Algorithms for radiative intensity calculations in moderately thick atmospheres using a truncation approximation , 1988 .

[3]  Steven A. Ackerman,et al.  The 27–28 October 1986 FIRE IFO Cirrus Case Study: Spectral Properties of Cirrus Clouds in the 8–12 μm Window , 1990 .

[4]  Samantha Melani,et al.  CONSIDERATIONS ON DAYLIGHT OPERATION OF 1.6-VERSUS 3.7-µm CHANNEL ON NOAA AND METOP SATELLITES , 2004 .

[5]  W. Menzel,et al.  Discriminating clear sky from clouds with MODIS , 1998 .

[6]  S. Twomey,et al.  Aerosols, clouds and radiation , 1991 .

[7]  Vladimir V. Rozanov,et al.  The reflection function of optically thick weakly absorbing turbid layers: a simple approximation , 2003 .

[8]  R. Davies,et al.  Observational evidence of plane parallel model biases: Apparent dependence of cloud optical depth on solar zenith angle , 1996 .

[9]  J. Tauc,et al.  Anomalous light scattering in liquid sulfur at the polymerization transition. , 1976, Applied optics.

[10]  Van de Hulst,et al.  Multiple Light Scattering: Tables, Formulas, and Applications , 1980 .

[11]  Qingyuan Han,et al.  Validation of Satellite Retrievals of Cloud Microphysics and Liquid Water Path Using Observations from FIRE. , 1995 .

[12]  A. S. Belward,et al.  Advances in the Use of NOAA AVHRR Data for Land Applications , 1996 .

[13]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[14]  Bryan A. Baum,et al.  Nighttime Multilayered Cloud Detection Using MODIS and ARM Data , 2003 .

[15]  Jörg Bendix,et al.  An operational MODIS processing scheme for PC dedicated to direct broadcasting applications in meteorology and earth sciences , 2005, Comput. Geosci..

[16]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[17]  Melanie A. Wetzel,et al.  Retrieval of Marine Stratus Cloud Droplet Size from NOAA–AVHRR Nighttime Imagery , 2000 .

[18]  T. Nakajima,et al.  Wide-Area Determination of Cloud Microphysical Properties from NOAA AVHRR Measurements for FIRE and ASTEX Regions , 1995 .

[19]  M. Buchwitz,et al.  SCIAMACHY: Mission Objectives and Measurement Modes , 1999 .

[20]  Teruyuki Nakajima,et al.  A Global Determination of Cloud Microphysics with AVHRR Remote Sensing , 2001 .

[21]  Kuo-Nan Liou,et al.  Parameterization of the Radiative Properties of Clouds , 1979 .

[22]  M. King,et al.  Asymptotic theory for optically thick layers: application to the discrete ordinates method. , 1992, Applied optics.

[23]  Eleonora P. Zege,et al.  A semianalytical cloud retrieval algorithm using backscattered radiation in 0.4–2.4 μm spectral region , 2003 .

[24]  Bernhard Mayer,et al.  The influence of neighbouring clouds on the clear sky reflectance studied with the 3-D transport code RADUGA , 2005 .

[25]  Robert Pincus,et al.  Precipitation in Stratocumulus Clouds: Observational and Modeling Results. , 1995 .

[26]  Steven Platnick,et al.  A Validation of a Satellite Cloud Retrieval during ASTEX , 1995 .

[27]  Alexander A. Kokhanovsky The depth of sunlight penetration in cloud fields for remote sensing , 2004, IEEE Geoscience and Remote Sensing Letters.

[28]  D. C. Robertson,et al.  MODTRAN cloud and multiple scattering upgrades with application to AVIRIS , 1998 .

[29]  W. Paul Menzel,et al.  Cloud Properties inferred from 812-µm Data , 1994 .

[30]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[31]  Tamás Várnai,et al.  Influence of Three-Dimensional Radiative Effects on the Spatial Distribution of Shortwave Cloud Reflection , 2000 .

[32]  A. Bower,et al.  Formation and circulation of dense water in the Persian/Arabian Gulf , 2003 .

[33]  C. Bretherton,et al.  The Epic 2001 Stratocumulus Study , 2004 .

[34]  A. Arking,et al.  Retrieval of Cloud Cover Parameters from Multispectral Satellite Images , 1985 .

[35]  A. Lacis,et al.  Near-Global Survey of Effective Droplet Radii in Liquid Water Clouds Using ISCCP Data. , 1994 .

[36]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[37]  Alexander A. Kokhanovsky,et al.  Reflection of light from nonasbsorbing semi-infinite cloudy media: a simple approximation , 2004 .

[38]  John P. Burrows,et al.  The semianalytical cloud retrieval algorithm for SCIAMACHY I. The validation , 2005 .

[39]  Teruyuki Nakajima,et al.  Matrix formulations for the transfer of solar radiation in a plane-parallel scattering atmosphere. , 1986 .

[40]  M. King,et al.  Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations , 1991 .

[41]  A. Kokhanovsky Optical properties of terrestrial clouds , 2004 .

[42]  M. King Determination of the Scaled Optical Thickness of Clouds from Reflected Solar Radiation Measurements , 1987 .

[43]  B. Wielicki,et al.  Multilevel cloud retrieval using multispectral HIRS and AVHRR data: Nighttime oceanic analysis , 1994 .

[44]  J. Kiehl,et al.  Sensitivity of a GCM climate simulation to differences in continental versus maritime cloud drop size , 1994 .

[45]  Patrick Minnis,et al.  Comparison of cirrus optical depths derived from GOES 8 and surface measurements , 2004 .

[46]  Didier Tanré,et al.  Second Simulation of the Satellite Signal in the Solar Spectrum, 6S: an overview , 1997, IEEE Trans. Geosci. Remote. Sens..

[47]  Eleonora P. Zege,et al.  Image Transfer Through a Scattering Medium , 1991 .

[48]  Michael I. Mishchenko,et al.  Bidirectional Reflectance of Flat, Optically Thick Particulate Layers: An Efficient Radiative Transfer Solution and Applications to Snow and Soil Surfaces , 1999 .