New toughening concepts for ceramic composites from rigid natural materials.
暂无分享,去创建一个
[1] G. Mayer,et al. Influence of moisture on the mechanical behavior of a natural composite. , 2010, Acta biomaterialia.
[2] Marc André Meyers,et al. Mechanical Behavior of Materials (2nd ed.) , 2009 .
[3] G. Mayer,et al. The Role of the Organic Component in the Mechanical Behavior of Biomineralized Composites , 2009 .
[4] Markus J. Buehler,et al. Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture , 2008 .
[5] Muhammad Nawaz Tahir,et al. Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. , 2008, Journal of structural biology.
[6] Marc André Meyers,et al. Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.
[7] T. Sumitomo,et al. Structure of Natural Nano-Laminar Composites: TEM Observation of Nacre , 2007 .
[8] Markus J. Buehler,et al. Fracture mechanics of protein materials , 2007 .
[9] A. Heuer,et al. Secrets in the Shell , 2007 .
[10] G. Mayer,et al. Effects of loading rate on the mechanical behavior of a natural rigid composite. , 2007, Acta biomaterialia.
[11] Brian D. Flinn,et al. Mechanisms of toughening of a natural rigid composite , 2007 .
[12] James C. Weaver,et al. Micromechanical properties of biological silica in skeletons of deep-sea sponges , 2006 .
[13] R. Ogden,et al. Mechanics of biological tissue , 2006 .
[14] R. Bert. The New Science of Strong Materials: or Why You Don't Fall through the Floor , 2006 .
[15] J. S. Palmer,et al. Micromechanics and Macromechanics of the Tensile Deformation of Nacre , 2006 .
[16] G. Mayer,et al. Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.
[17] T. Belytschko,et al. Biological Structures Mitigate Catastrophic Fracture Through Various Strategies , 2005 .
[18] J. Aizenberg,et al. Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.
[19] M. Boyce,et al. Protein Forced Unfolding and Its Effects on the Finite Deformation Stress-Strain Behavior of Biomacromolecular Solids , 2005 .
[20] K. Katti,et al. Computational Mechanics Routes to Explore the Origin of Mechanical Properties in a Biological Nanocomposite: Nacre , 2004 .
[21] E. Lara‐Curzio,et al. Lessons for New Classes of Inorganic/Organic Composites from the Spicules and Skeleton of the Sea Sponge Euplectella aspergillum , 2004 .
[22] Zhigang Suo,et al. Deformation mechanisms in nacre , 2001 .
[23] Zhigang Suo,et al. Model for the robust mechanical behavior of nacre , 2001 .
[24] D. Roylance. INTRODUCTION TO COMPOSITE MATERIALS , 2000 .
[25] David J. Green,et al. An Introduction to the Mechanical Properties of Ceramics , 1998 .
[26] M. Matthewson,et al. Mechanical properties of ceramics , 1996 .
[27] Michael F. Ashby,et al. The mechanical properties of natural materials. I. Material property charts , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[28] I. Aksay,et al. Biomimetics. Design and Processing of Materials. , 1995 .
[29] A. P. Jackson,et al. Comparison of nacre with other ceramic composites , 1990 .
[30] T. Courtney,et al. Mechanical Behavior of Materials , 1990 .
[31] J. Barton,et al. A remarkably strong natural glassy rod: the anchoring spicule of theMonorhaphis sponge , 1989 .
[32] K. Simkiss,et al. Biomineralization : cell biology and mineral deposition , 1989 .
[33] A. P. Jackson,et al. The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[34] Gordon Je. Biomechanics: the last stronghold of vitalism. , 1980 .
[35] J. Currey,et al. Mechanical properties of mollusc shell. , 1980, Symposia of the Society for Experimental Biology.
[36] John D. Currey,et al. Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[37] J. E. Gordon,et al. A mechanism for the control of crack propagation in all-brittle systems , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[38] H. Kalmus,et al. Symposia of the Society for Experimental Biology. , 1961 .
[39] L. Beadle,et al. Society for Experimental Biology , 1947, Nature.
[40] E. Orowan,et al. Die erhöhte Festigkeit dünner Fäden, der Joffé-Effekt und verwandte Erscheinungen vom Standpunkt der Griffithschen Bruchtheorie , 1933 .
[41] A. A. Griffith. The Phenomena of Rupture and Flow in Solids , 1921 .