New toughening concepts for ceramic composites from rigid natural materials.

[1]  G. Mayer,et al.  Influence of moisture on the mechanical behavior of a natural composite. , 2010, Acta biomaterialia.

[2]  Marc André Meyers,et al.  Mechanical Behavior of Materials (2nd ed.) , 2009 .

[3]  G. Mayer,et al.  The Role of the Organic Component in the Mechanical Behavior of Biomineralized Composites , 2009 .

[4]  Markus J. Buehler,et al.  Theoretical and computational hierarchical nanomechanics of protein materials: Deformation and fracture , 2008 .

[5]  Muhammad Nawaz Tahir,et al.  Bioorganic/inorganic hybrid composition of sponge spicules: matrix of the giant spicules and of the comitalia of the deep sea hexactinellid Monorhaphis. , 2008, Journal of structural biology.

[6]  Marc André Meyers,et al.  Mechanical strength of abalone nacre: role of the soft organic layer. , 2008, Journal of the mechanical behavior of biomedical materials.

[7]  T. Sumitomo,et al.  Structure of Natural Nano-Laminar Composites: TEM Observation of Nacre , 2007 .

[8]  Markus J. Buehler,et al.  Fracture mechanics of protein materials , 2007 .

[9]  A. Heuer,et al.  Secrets in the Shell , 2007 .

[10]  G. Mayer,et al.  Effects of loading rate on the mechanical behavior of a natural rigid composite. , 2007, Acta biomaterialia.

[11]  Brian D. Flinn,et al.  Mechanisms of toughening of a natural rigid composite , 2007 .

[12]  James C. Weaver,et al.  Micromechanical properties of biological silica in skeletons of deep-sea sponges , 2006 .

[13]  R. Ogden,et al.  Mechanics of biological tissue , 2006 .

[14]  R. Bert The New Science of Strong Materials: or Why You Don't Fall through the Floor , 2006 .

[15]  J. S. Palmer,et al.  Micromechanics and Macromechanics of the Tensile Deformation of Nacre , 2006 .

[16]  G. Mayer,et al.  Rigid Biological Systems as Models for Synthetic Composites , 2005, Science.

[17]  T. Belytschko,et al.  Biological Structures Mitigate Catastrophic Fracture Through Various Strategies , 2005 .

[18]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[19]  M. Boyce,et al.  Protein Forced Unfolding and Its Effects on the Finite Deformation Stress-Strain Behavior of Biomacromolecular Solids , 2005 .

[20]  K. Katti,et al.  Computational Mechanics Routes to Explore the Origin of Mechanical Properties in a Biological Nanocomposite: Nacre , 2004 .

[21]  E. Lara‐Curzio,et al.  Lessons for New Classes of Inorganic/Organic Composites from the Spicules and Skeleton of the Sea Sponge Euplectella aspergillum , 2004 .

[22]  Zhigang Suo,et al.  Deformation mechanisms in nacre , 2001 .

[23]  Zhigang Suo,et al.  Model for the robust mechanical behavior of nacre , 2001 .

[24]  D. Roylance INTRODUCTION TO COMPOSITE MATERIALS , 2000 .

[25]  David J. Green,et al.  An Introduction to the Mechanical Properties of Ceramics , 1998 .

[26]  M. Matthewson,et al.  Mechanical properties of ceramics , 1996 .

[27]  Michael F. Ashby,et al.  The mechanical properties of natural materials. I. Material property charts , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[28]  I. Aksay,et al.  Biomimetics. Design and Processing of Materials. , 1995 .

[29]  A. P. Jackson,et al.  Comparison of nacre with other ceramic composites , 1990 .

[30]  T. Courtney,et al.  Mechanical Behavior of Materials , 1990 .

[31]  J. Barton,et al.  A remarkably strong natural glassy rod: the anchoring spicule of theMonorhaphis sponge , 1989 .

[32]  K. Simkiss,et al.  Biomineralization : cell biology and mineral deposition , 1989 .

[33]  A. P. Jackson,et al.  The mechanical design of nacre , 1988, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[34]  Gordon Je Biomechanics: the last stronghold of vitalism. , 1980 .

[35]  J. Currey,et al.  Mechanical properties of mollusc shell. , 1980, Symposia of the Society for Experimental Biology.

[36]  John D. Currey,et al.  Mechanical properties of mother of pearl in tension , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  J. E. Gordon,et al.  A mechanism for the control of crack propagation in all-brittle systems , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[38]  H. Kalmus,et al.  Symposia of the Society for Experimental Biology. , 1961 .

[39]  L. Beadle,et al.  Society for Experimental Biology , 1947, Nature.

[40]  E. Orowan,et al.  Die erhöhte Festigkeit dünner Fäden, der Joffé-Effekt und verwandte Erscheinungen vom Standpunkt der Griffithschen Bruchtheorie , 1933 .

[41]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .