Mixed Integer-Real Valued Adjustment (IRA) Problems: GPS Initial Cycle Ambiguity Resolution by Means of the LLL Algorithm
暂无分享,去创建一个
[1] H. Hsu,et al. A new approach to GPS ambiguity decorrelation , 1999 .
[2] A. Saalfeld,et al. Generating basis sets of double differences , 1999 .
[3] Y. Q. Chen,et al. Grid point search algorithm for fast integer ambiguity resolution , 1998 .
[4] 徐 培亮,et al. Mixed Integer Geodetic Observation Models and Integer Programming with Applications to GPS Ambiguity Resolution. , 1998 .
[5] L. Trefethen,et al. Numerical linear algebra , 1997 .
[6] Stephen P. Boyd,et al. Integer parameter estimation in linear models with applications to GPS , 1996, Proceedings of 35th IEEE Conference on Decision and Control.
[7] Peter Teunissen,et al. Rank defect integer least-squares with applications to GPS , 1996 .
[8] P. Teunissen. The least-squares ambiguity decorrelation adjustment: a method for fast GPS integer ambiguity estimation , 1995 .
[9] Peter Teunissen,et al. The invertible GPS ambiguity transformations , 1995 .
[10] P. Teunissen. Least-squares estimation of the integer GPS ambiguities , 1993 .
[11] Michael E. Pohst,et al. A Modification of the LLL Reduction Algorithm , 1987, J. Symb. Comput..
[12] László Babai,et al. On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..
[13] Hendrik W. Lenstra,et al. Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..
[14] László Lovász,et al. Factoring polynomials with rational coefficients , 1982 .