Evolutionary Algorithms and Dynamic Optimization Problems

[1]  Phillip D. Stroud,et al.  Kalman-extended genetic algorithm for search in nonstationary environments with noisy fitness evaluations , 2001, IEEE Trans. Evol. Comput..

[2]  David B. Fogel,et al.  A Preliminary Investigation into Directed Mutations in Evolutionary Algorithms , 1996, PPSN.

[3]  Hajime Kita,et al.  Adaptation to Changing Environments by Means of the Memory Based Thermodynamical Genetic Algorithm , 1997, ICGA.

[4]  Peter J. Angeline,et al.  Tracking Extrema in Dynamic Environments , 1997, Evolutionary Programming.

[5]  Marc,et al.  [Lecture Notes in Computer Science] Parallel Problem Solving from Nature â PPSN V Volume 1498 || Parallelization strategies for Ant Colony Optimization , 1998 .

[6]  Xin Yao,et al.  Fast Evolutionary Programming , 1996, Evolutionary Programming.

[7]  Marc Schoenauer,et al.  Dynamic air traffic planning by genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[8]  T. Mahnig,et al.  Evolutionary algorithms: from recombination to search distributions , 2001 .

[9]  William H. Press,et al.  Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .

[10]  John R. Koza,et al.  Hierarchical Genetic Algorithms Operating on Populations of Computer Programs , 1989, IJCAI.

[11]  Peter J. Angeline,et al.  Evolving predictors for chaotic time series , 1998, Defense, Security, and Sensing.

[12]  C. Wilke Evolution in time-dependent fitness landscapes , 1998, physics/9811021.

[13]  Philippe Collard,et al.  An Evolutionary Approach for Time Dependent Optimization , 1997, Int. J. Artif. Intell. Tools.

[14]  Anthony G. Pipe,et al.  Hybrid Adaptive Heuristic Critic Architectures for Learning in Mazes with Continuous Search Spaces , 1994, PPSN.

[15]  Helen G. Cobb,et al.  An Investigation into the Use of Hypermutation as an Adaptive Operator in Genetic Algorithms Having Continuous, Time-Dependent Nonstationary Environments , 1990 .

[16]  Thomas Martinetz,et al.  Molecular Evolution in Time-Dependent Environments , 1999, ECAL.

[17]  Terence C. Fogarty,et al.  A Comparative Study of Steady State and Generational Genetic Algorithms , 1996, Evolutionary Computing, AISB Workshop.

[18]  Thomas Martinetz,et al.  Genetic Algorithms in Time-Dependent Environments , 1999, ArXiv.

[19]  John J. Grefenstette,et al.  Genetic Algorithms for Tracking Changing Environments , 1993, ICGA.

[20]  Rasmus K. Ursem,et al.  Multinational GAs: Multimodal Optimization Techniques in Dynamic Environments , 2000, GECCO.

[21]  Ralf Salomon,et al.  Adaptation on the Evolutionary Time Scale: A Working Hypothesis and Basic Experiments , 1997, Artificial Evolution.

[22]  John J. Grefenstette,et al.  An Approach to Anytime Learning , 1992, ML.

[23]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[24]  Karsten Weicker,et al.  Problem Difficulty in Real-Valued Dynamic Problems , 2001, Fuzzy Days.

[25]  Adrian R. Hartley,et al.  Accuracy-based fitness allows similar performance to humans in static and dynamic classification environments , 1999, GECCO.

[26]  Jürgen Branke,et al.  Memory enhanced evolutionary algorithms for changing optimization problems , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[27]  Piero P. Bonissone,et al.  Soft computing: the convergence of emerging reasoning technologies , 1997, Soft Comput..

[28]  Philippe Collard,et al.  An evolutionary approach for time dependant optimization , 1996, Proceedings Eighth IEEE International Conference on Tools with Artificial Intelligence.

[29]  David B. Fogel,et al.  Evolutionary Computation: Towards a New Philosophy of Machine Intelligence , 1995 .

[30]  Hans-Paul Schwefel,et al.  Evolution and optimum seeking , 1995, Sixth-generation computer technology series.

[31]  I N Bronstein,et al.  Taschenbuch der Mathematik , 1966 .

[32]  R.W. Morrison,et al.  A test problem generator for non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[33]  John H. Holland,et al.  Genetic Algorithms and the Optimal Allocation of Trials , 1973, SIAM J. Comput..

[34]  W. Cedeno,et al.  On the use of niching for dynamic landscapes , 1997, Proceedings of 1997 IEEE International Conference on Evolutionary Computation (ICEC '97).

[35]  D. Dasgupta Incorporating Redundancy and Gene Activation Mechanisms i n Genetic search for adapting to Non-Stationary Environments , 1995 .

[36]  Terence C. Fogarty,et al.  Use of the Genetic Algorithm for Load Balancing of Sugar Beet Presses , 1995, ICGA.

[37]  Hugh M. Cartwright,et al.  Genetic Algorithms and Flowshop Scheduling: Towards the Development of a Real-Time Process Control System , 1994, Evolutionary Computing, AISB Workshop.

[38]  Peter Ross,et al.  A Promising Genetic Algorithm Approach to Job-Shop SchedulingRe-Schedulingand Open-Shop Scheduling Problems , 1993, ICGA.

[39]  Christoph F. Eick,et al.  Supporting Polyploidy in Genetic Algorithms Using Dominance Vectors , 1997, Evolutionary Programming.

[40]  Conor Ryan,et al.  Polygenic Inheritance - A Haploid Scheme that Can Outperform Diploidy , 1998, PPSN.

[41]  David G. Green,et al.  An Empirical Investigation of Optimization in Dynamic Environments Using the Cellular Genetic Algorithm , 2000, GECCO.

[42]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[43]  K. Weicker,et al.  On evolution strategy optimization in dynamic environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[44]  S. K. Park,et al.  Random number generators: good ones are hard to find , 1988, CACM.

[45]  K. De Jong,et al.  The usefulness of tag bits in changing environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[46]  Kenneth A. De Jong,et al.  Artificial Evolution , 2021, Lecture Notes in Computer Science.

[47]  Tim Jones Evolutionary Algorithms, Fitness Landscapes and Search , 1995 .

[48]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[49]  David Abramson,et al.  Displacement problem and dynamically scheduling aircraft landings , 2004, J. Oper. Res. Soc..

[50]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[51]  John J. Grefenstette,et al.  Evolvability in dynamic fitness landscapes: a genetic algorithm approach , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[52]  Detlef Nauck,et al.  Fuzzy-Evolutionary Systems , 1998 .

[53]  Claus O. Wilke,et al.  Evolutionary Dynamics in Time-dependent Environments , 1999 .

[54]  Christos H. Papadimitriou,et al.  The Euclidean Traveling Salesman Problem is NP-Complete , 1977, Theor. Comput. Sci..

[55]  Christopher Ronnewinkel,et al.  Dynamic fitness landscapes: expansions for small mutation rates , 2000, physics/0010045.

[56]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[57]  Hans-Paul Schwefel,et al.  Parallel Problem Solving from Nature — PPSN IV , 1996, Lecture Notes in Computer Science.

[58]  André Neubauer,et al.  A Comparative Study of Evolutionary Algorithms for On-Line Parameter Tracking , 1996, PPSN.

[59]  Karsten Weicker,et al.  Dynamic rotation and partial visibility , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[60]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[61]  M. E. Muller,et al.  A Note on the Generation of Random Normal Deviates , 1958 .

[62]  Karsten Weicker,et al.  An Analysis of Dynamic Severity and Population Size , 2000, PPSN.

[63]  Terence C. Fogarty,et al.  Adaptive Combustion Balancing in Multiple Burner Boiler Using a Genetic Algorithm with Variable Range of Local Search , 1997, ICGA.

[64]  J. Rowe,et al.  Cyclic attractors and quasispecies adaptability , 2001 .

[65]  Michael O. Odetayo,et al.  Genetic Algorithm for Inducing Control Rules for a Dynamic System , 1989, International Conference on Genetic Algorithms.

[66]  A. Fraser Simulation of Genetic Systems by Automatic Digital Computers VI. Epistasis , 1960 .

[67]  Hans-Paul Schwefel,et al.  Numerical Optimization of Computer Models , 1982 .

[68]  John H. Holland,et al.  A new kind of turnpike theorem , 1969 .

[69]  Jim Smith,et al.  Replacement Strategies in Steady State Genetic Algorithms: Static Environments , 1998, FOGA.

[70]  David E. Goldberg,et al.  Nonstationary Function Optimization Using Genetic Algorithms with Dominance and Diploidy , 1987, ICGA.

[71]  Jürgen Branke,et al.  Anticipation in Dynamic Optimization: The Scheduling Case , 2000, PPSN.

[72]  Christian Bierwirth,et al.  Production Scheduling and Rescheduling with Genetic Algorithms , 1999, Evolutionary Computation.

[73]  Anne Spalanzani,et al.  Evolution, Learning and Speech Recognition in Changing Acoustic Environments , 1998, PPSN.

[74]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[75]  Claus O. Wilke,et al.  Dynamic fitness landscapes in molecular evolution , 1999, physics/9912012.

[76]  Kathleen M. Swigger,et al.  An Analysis of Genetic-Based Pattern Tracking and Cognitive-Based Component Tracking Models of Adaptation , 1983, AAAI.

[77]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[78]  Robert G. Reynolds,et al.  Cultural algorithms in dynamic environments , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[79]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[80]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[81]  John J. Grefenstette,et al.  Case-Based Initialization of Genetic Algorithms , 1993, ICGA.

[82]  David H. Ackley,et al.  Adaptation in Constant Utility Non-Stationary Environments , 1991, ICGA.

[83]  George E. P. Box,et al.  Evolutionary Operation: a Method for Increasing Industrial Productivity , 1957 .

[84]  Terence C. Fogarty,et al.  A Genetic Algorithm with Variable Range of Local Search for Tracking Changing Environments , 1996, PPSN.

[85]  J. Reed,et al.  Simulation of biological evolution and machine learning. I. Selection of self-reproducing numeric patterns by data processing machines, effects of hereditary control, mutation type and crossing. , 1967, Journal of theoretical biology.

[86]  Kok Cheong Wong,et al.  A New Diploid Scheme and Dominance Change Mechanism for Non-Stationary Function Optimization , 1995, ICGA.

[87]  David B. Fogel,et al.  Evolving artificial intelligence , 1992 .

[88]  Georgios I. Papadimitriou,et al.  On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[89]  Sushil J. Louis,et al.  Robust stability analysis of discrete-time systems using genetic algorithms , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[90]  M. Chowdhury,et al.  Benchmarks for testing evolutionary algorithms , 1998 .

[91]  M. Eigen Selforganization of matter and the evolution of biological macromolecules , 1971, Naturwissenschaften.

[92]  Dipankar Dasgupta,et al.  Nonstationary Function Optimization using the Structured Genetic Algorithm , 1992, PPSN.

[93]  Erik D. Goodman,et al.  A Genetic Algorithm Approach to Dynamic Job Shop Scheduling Problem , 1997, ICGA.

[94]  C. Bierwirth,et al.  Genetic algorithm based scheduling in a dynamic manufacturing environment , 1995, Proceedings of 1995 IEEE International Conference on Evolutionary Computation.

[95]  Philippe Collard,et al.  Genetic Algorithms at the Edge of a Dream , 1997, Artificial Evolution.

[96]  David B. Fogel,et al.  A Comparison of Self-Adaptation Methods for Finite State Machines in Dynamic Environments , 1996, Evolutionary Programming.

[97]  R.W. Morrison,et al.  Triggered hypermutation revisited , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[98]  Philippe Collard,et al.  There is ALife beyond convergence: using a dual sharing to adapt in time dependent optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[99]  Michèle Sebag,et al.  Toward Civilized Evolution: Developing Inhibitions , 1997, ICGA.

[100]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[101]  Alex Fraser,et al.  Simulation of Genetic Systems by Automatic Digital Computers I. Introduction , 1957 .

[102]  Gerry V. Dozier,et al.  Steady-State Evolutionary Path Planning, Adaptive Replacement, and Hyper-Diversity , 2000, PPSN.

[103]  Hajime Kita,et al.  Adaptation to a Changing Environment by Means of the Feedback Thermodynamical Genetic Algorithm , 1996, PPSN.

[104]  David E. Goldberg,et al.  Diploidy and Dominance in Artificial Genetic Search , 1992, Complex Syst..

[105]  Kenneth A. De Jong,et al.  Genetic Algorithms are NOT Function Optimizers , 1992, FOGA.

[106]  L. Kallel,et al.  Theoretical Aspects of Evolutionary Computing , 2001, Natural Computing Series.

[107]  David B. Fogel,et al.  Evolutionary program for the identification of dynamical systems , 1997, Defense, Security, and Sensing.

[108]  Stefan Droste,et al.  Analysis of the (1+1) EA for a dynamically changing ONEMAX-variant , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[109]  Jason M. Daida,et al.  (1+1) genetic algorithm fitness dynamics in a changing environment , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[110]  Philippe Collard,et al.  Time dependent optimization with a folding genetic algorithm , 1997, Proceedings Ninth IEEE International Conference on Tools with Artificial Intelligence.

[111]  Lawrence J. Fogel,et al.  Artificial Intelligence through Simulated Evolution , 1966 .

[112]  John E. Biegel,et al.  Genetic algorithms and job shop scheduling , 1990 .

[113]  Emma Hart,et al.  A Comparison of Dominance Mechanisms and Simple Mutation on Non-stationary Problems , 1998, PPSN.

[114]  Christian Bierwirth,et al.  A Case Study of Operational Just-In-Time Scheduling Using Genetic Algorithms , 1995 .

[115]  Dirk Thierens,et al.  A Topology Exploiting Genetic Algorithm to Control Dynamic Systems , 1990, PPSN.

[116]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[117]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[118]  Karsten Weicker,et al.  Performance Measures for Dynamic Environments , 2002, PPSN.

[119]  Zbigniew Michalewicz,et al.  Searching for optima in non-stationary environments , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[120]  Richard M. Friedberg,et al.  A Learning Machine: Part I , 1958, IBM J. Res. Dev..

[121]  Kenneth de Jong,et al.  The behavior of spatially distributed evolutionary algorithms in non-stationary environments , 1999 .

[122]  Peter Ross,et al.  A Heuristic Combination Method for Solving Job-Shop Scheduling Problems , 1998, PPSN.

[123]  A. E. Eiben,et al.  Evolutionary Programming VII , 1998, Lecture Notes in Computer Science.

[124]  Philippe Collard,et al.  From GAs to artificial immune systems: improving adaptation in time dependent optimization , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[125]  Hans-Georg Beyer,et al.  Random Dynamics Optimum Tracking with Evolution Strategies , 2002, PPSN.

[126]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[127]  Kenneth A. De Jong,et al.  Evolving in a Changing World , 1999, ISMIS.

[128]  Michèle Sebag,et al.  Inductive Learning of Mutation Step-Size in Evolutionary Parameter Optimization , 1997, Evolutionary Programming.

[129]  Masaharu Munetomo,et al.  Genetic-Based Dynamic Load Balancing: Implementation and Evaluation , 1996, PPSN.

[130]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[131]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[132]  T. Back,et al.  On the behavior of evolutionary algorithms in dynamic environments , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[133]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[134]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[135]  Lawrence Davis,et al.  Training Feedforward Neural Networks Using Genetic Algorithms , 1989, IJCAI.

[136]  Jason M. Daida,et al.  Optimal Mutation and Crossover Rates for a Genetic Algorithm Operating in a Dynamic Environment , 1998, Evolutionary Programming.

[137]  Kumpati S. Narendra,et al.  Learning automata - an introduction , 1989 .