The Unreasonable Effectiveness of Mathematics.
暂无分享,去创建一个
Prologue. It is evident from the title that this is a philosophical discussion. I shall not apologize for the philosophy, though I am well aware that most scientists, engineers, and mathematicians have little regard for it; instead, I shall give this short prologue to justify the approach. Man, so far as we know, has always wondered about himself, the world around him, and what life is all about. We have many myths from the past that tell how and why God, or the gods, made man and the universe. These I shall call theological explanations. They have one principal characteristic in common-there is little point in asking why things are the way they are, since we are given mainly a description of the creation as the gods chose to do it. Philosophy started when man began to wonder about the world outside of this theological framework. An early example is the description by the philosophers that the world is made of earth, fire, water, and air. No doubt they were told at the time that the gods made things that way and to stop worrying about it. From these early attempts to explain things slowly came philosophy as well as our present science. Not that science explains "why" things are as they are-gravitation does not explain why things fall-but science gives so many details of "how" that we have the feeling we understand "why." Let us be clear about this point; it is by the sea of interrelated details that science seems to say "why" the universe is as it is. Our main tool for carrying out the long chains of tight reasoning required by science is mathematics. Indeed, mathematics might be defined as being the mental tool designed for this purpose. Many people through the ages have asked the question I am effectively asking in the title, "Why is mathematics so unreasonably effective?" In asking this we are merely looking more at the logical side and less at the material side of what the universe is and how it works. Mathematicians working in the foundations of mathematics are concerned mainly with the self-consistency and limitations of the system. They seem not to concern themselves with why the world apparently admits of a logical explanation. In a sense I am in the position of the early Greek philosophers who wondered about the material side, and my answers on the logical side are probably not much better than theirs were in their time. But we must begin somewhere and sometime to explain the phenomenon that the world seems to be organized in a logical pattern that parallels much of mathematics, that mathematics is the language of science and engineering. Once I had organized the main outline, I had then to consider how best to communicate my ideas and opinions to others. Experience shows that I am not always successful in this matter. It finally occurred to me that the following preliminary.remarks would help. In some respects this discussion is highly theoretical. I have to mention, at least slightly, various theories of the general activity called mathematics, as well as touch on selected parts of it. Furthermore, there are various theories of applications. Thus, to some extent, this leads to a theory of theories. What may surprise you is that I shall take the experimentalist's approach in discussing things. Never mind what the theories are supposed to be, or what you think they should be, or even what the experts in the field assert they are; let us take the scientific attitude and look at what they are. I am well aware that much of what I say, especially about the nature
[1] R. Courant,et al. What Is Mathematics , 1943 .
[2] E. Wigner. The Unreasonable Effectiveness of Mathematics in the Natural Sciences (reprint) , 1960 .
[3] I. Lakatos. PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.
[5] Gerald Holton,et al. Thematic Origins of Scientific Thought: Kepler to Einstein. , 1976 .