Use of macroalgae for marine biomass production and CO2 remediation: a review

Biomass production from macroalgae has been viewed as important mainly because of the need for pollution abatement. Environmental considerations will increasingly determine product and process acceptability and drive the next generation of economic opportunity. Some countries, including Japan, are actively promoting "green" technologies that will be in demand worldwide in the coming decades. Should an international agreement on CO2-reduction be ratified, its effective use for energy production would be of high priority. This report shows that macroalgae have great potential for biomass production and CO2 bioremediation. Macroalgae have high productivity, as great or greater than the most productive land plants, and do not compete with terrestrial crops for farm land. The review focuses on recent data on productivity, photosynthesis, nutrient dynamics, optimization and economics. Biomass from macroalgae promises to provide environmentally and economically feasible alternatives to fossil fuels. Nevertheless, the techniques and technologies for growing macroalgae on a large-scale and for converting feedstocks to energy carriers must be more fully developed.

[1]  U Küppers,et al.  Longitudinal profiles of carbon dioxide fixation capacities in marine macroalgae. , 1978, Plant physiology.

[2]  C. Osmond,et al.  Photoacclimation and photoinhibition inUlva rotundata as influenced by nitrogen availability , 2004, Planta.

[3]  R. Bidwell,et al.  Tank Cultivation of Irish Moss, Chondrus crispus Stackh. , 1985 .

[4]  A. Mccomb,et al.  Nitrogen and Phosphorus Nutrition of Cladophora in the Peel-Harvey Estuarine System, Western Australia , 1981 .

[5]  P. Nienhuis,et al.  Canopy characteristics of the brown alga Sargassum muticum (Fucales, Phaeophyta) in Lake Grevelingen, southwest Netherlands , 1990, Hydrobiologia.

[6]  F. I. Dromgoole The effects of pH and inorganic carbon on photosynthesis and dark respiration of Carpophyllum (Fucales, Phaeophyceae) , 1978 .

[7]  R. Cousens Estimation of Annual Production by the Intertidal Brown Alga Ascophyllum nodosum (L.) Le Jolis , 1984 .

[8]  K. Mann,et al.  Ecological energetics of the sea-weed zone in a marine bay on the Atlantic coast of Canada. II. Productivity of the seaweeds , 1972, Marine Biology.

[9]  G. Akoyunoglou Photosynthesis and productivity ; Photosynthesis and environment , 1981 .

[10]  I. Wallentinus Comparisons of nutrient uptake rates for Baltic macroalgae with different thallus morphologies , 1984 .

[11]  B. Tilbrook,et al.  Oceanic Uptake of Fossil Fuel CO2: Carbon-13 Evidence , 1992, Science.

[12]  I. Novaczek Development and phenology of Ecklonia radiata at two depths in Goat Island Bay, New Zealand , 1984 .

[13]  J. Ryther,et al.  Effects of Seawater Exchange, pH and Carbon Supply on the Growth of Gracilaria tikvahiae (Rhodophyceae) in Large-scale Cultures , 1984 .

[14]  W. Broecker Ocean chemistry during glacial time , 1982 .

[15]  W. North,et al.  EFFECT OF NITROGEN SUPPLY ON NITROGEN CONTENT AND GROWTH RATE OF JUVENILE MACROCYSTIS PYRIFERA (PHAEOPHYTA) SPOROPHYTES 1 , 1980 .

[16]  D. P. Chynoweth,et al.  Biological gasification of marine algae , 1987 .

[17]  S. Maberly,et al.  A COMPARISON OF AIR AND WATER AS ENVIRONMENTS FOR PHOTOSYNTHESIS BY THE INTERTIDAL ALGA FUCUS SPIRALIS (PHAEOPHYTA) 1 , 1990 .

[18]  W. Adey,et al.  Measurements of primary productivity and nitrogenase activity of coral reef algae in a chamber incorporating oscillatory flow , 1991 .

[19]  M. Harlin,et al.  NITRATE UPTAKE BY LAMINARIA LONGICRURIS (PHAEOPHYCEAE)1, 2 , 1978 .

[20]  X. Fei,et al.  Macroalgal commercialization in the Orient , 1987, Hydrobiologia.

[21]  W. Schramm,et al.  Mass culture of brackish-water-adapted seaweeds in sewage-enriched seawater I. Productivity and nutrient accumulation , 1984, Hydrobiologia.

[22]  K. Asada,et al.  Influence of enhanced CO2 on growth and photosynthesis of the red algaeGracilaria sp. andG. chilensis , 1993, Journal of Applied Phycology.

[23]  J. Raven Limits on growth rates , 1993, Nature.

[24]  H. Hirata,et al.  Effects of Feed Additive Ulva Reproduced in Feedback Culture System on the Growth and Color of Red Sea Bream, Pagrus major , 1990 .

[25]  M. Harlin,et al.  UPTAKE OF INORGANIC NITROGEN BY CODIUM FRAGILE SUBSP. TOMENTOSOIDES (CHLOROPHYTA) 1 , 1978 .

[26]  W. N. Wheeler,et al.  Seasonal nitrate physiology of Macrocystis integrifolia Bory , 1984 .

[27]  R. Bidwell,et al.  Carbonic Anhydrase-Dependent Inorganic Carbon Uptake by the Red Macroalga, Chondrus crispus. , 1987, Plant physiology.

[28]  W. N. Wheeler Effect of boundary layer transport on the fixation of carbon by the giant kelp Macrocystis pyrifera , 1980 .

[29]  J. Ryther,et al.  Controlled Eutrophication—Increasing Food Production From the Sea by Recycling Human Wastes , 1972 .

[30]  J. Craigie,et al.  Seasonal growth in Laminaria longicruris: Relations with dissolved inorganic nutrients and internal reserves of nitrogen , 1977 .

[31]  K. Gao,et al.  Comparative studies of photosynthesis in different parts of Sargassum thunbergii , 1989 .

[32]  The role of ocean-atmosphere reorganizations in glacial cycles , 1989 .

[33]  K. Gao,et al.  Studies on diurnal photosynthetic performance of Sargassum thunbergii II Explanation of diurnal photosynthesis patterns from examinations in the laboratory , 1989 .

[34]  A. Larkum,et al.  Calcification in the Green Alga Halimeda , 1976 .

[35]  A. D. Smith,et al.  Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana , 1979 .

[36]  C. Fernández,et al.  Ecology of Sargassum muticum on the North Coast of Spain. Preliminary Observations , 1990 .

[37]  A. M. Johnston,et al.  Effects of culture in high CO2 on the photosynthetic physiology of Fucus serratus , 1990 .

[38]  Washiro Kida Culture of seaweeds monostroma , 1990 .

[39]  Stephen Hunt,et al.  Measurements of photosynthesis and respiration in plants. , 2003, Physiologia plantarum.

[40]  D. O. Hall,et al.  Cooling the greenhouse with bioenergy , 1991, Nature.

[41]  K. Gao,et al.  Studies on diurnal photosynthetic performance of Sargassum thunbergii I changes in photosynthesis under natural sunlight , 1989 .

[42]  K. Gao,et al.  Preliminary studies on the photosynthesis and respiration of Porphyra yezoensis under emersed conditions , 1987 .

[43]  M. Harlin Nitrate uptake by Enteromorpha spp. (Chlorophyceae): Applications to aquaculture systems , 1978 .

[44]  K. Sand‐Jensen,et al.  Differential ability of marine and freshwater macrophytes to utilize HCO3- and CO2 , 1984 .

[45]  M. Borowitzka,et al.  Calcification in the Green Alga Halimeda III. THE SOURCES OF INORGANIC CARBON FOR PHOTOSYNTHESIS AND CALCIFICATION AND A MODEL OF THE MECHANISM OF CALCIFICATION , 1976 .

[46]  S. Beer,et al.  Photosynthesis in Ulva fasciata: V. Evidence for an Inorganic Carbon Concentrating System, and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase CO(2) Kinetics. , 1990, Plant physiology.

[47]  J. Sarmiento,et al.  Potential of marine macroalgae as a sink for CO2: Constraints from a 3-D general circulation model of the global ocean , 1992 .

[48]  M. Okazaki Carbonic Anhydrase in the Calcareous Red Alga, Serraticardia maxima , 1972 .

[49]  K. Gao,et al.  Effects of Nutrients on the Photosynthesis of Sargassum thunbergii , 1990 .

[50]  C. Yarish,et al.  Productivity and life history of Laminaria longicruris at its southern limit in the Western Atlantic Ocean , 1990 .

[51]  M. Borowitzka Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea , 1981 .

[52]  M. Hanisak Recycling the Residues from Anaerobic Digesters as a Nutrient Source for Seaweed Growth , 1981 .

[53]  W. N. Wheeler Pigment content and photosynthetic rate of the fronds of Macrocystis pyrifera , 1980 .

[54]  J. Raven,et al.  Exogenous inorganic carbon sources for photosynthesis in seawater by members of the Fucales and the Laminariales (Phaeophyta): ecological and taxonomic implications , 2004, Oecologia.

[55]  K. Asada,et al.  Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations , 2004, Journal of Applied Phycology.

[56]  M. Dring Pigment composition and photosynthetic action spectra of sporophytes of Laminaria (Phaeophyta) grown in different light qualities and irradiances , 1986 .

[57]  M. Pedersen,et al.  Effects of pH and inorganic carbon concentration on growth of Gracilaria secundata , 1989 .

[58]  Joseph S. Davis,et al.  Photosynthesis in marine macroalgae: evidence for carbon limitation , 1988 .

[59]  W. Schramm,et al.  Seaweeds for waste water treatment and recycling of nutrients. , 1991 .

[60]  K. Gao,et al.  Comparative photosynthetic capacities of different parts of Sargassum horneri (Phaeophyta) , 1991 .

[61]  M. Littler,et al.  Significance of macroalgal polymorphism: intraspecific tests of the functional-form model , 1988 .

[62]  A. Neori,et al.  Ulva lactuca Biofilters for Marine Fishpond Effluents. I. Ammonia Uptake Kinetics and Nitrogen Content , 1991 .

[63]  A. M. Johnston,et al.  The utilization of bicarbonate ions by the macroalga Ascophyllum nodosum (L.) Le Jolis , 1986 .

[64]  R. Ritschard Marine algae as a co2 sink , 1992 .

[65]  P. Wheeler,et al.  AMMONIUN AND NITRATE UPTAKE BY THE MARINE MACROPHYTES HYPNEA MUSVUFORMIS (RHODOPHYTA) AND MACROCYSTIS PYRIFERA (PHAEOPHYTA) 1, 2 , 1978 .

[66]  C. Cook,et al.  Evidence for Bicarbonate Transport in Species of Red and Brown Macrophytic Marine Algae , 1986 .

[67]  C. Dawes,et al.  IN SITU UPTAKE KINETICS OF AMMONIUM AND PHOSPHATE AND CHEMICAL COMPOSITION OF THE RED SEAWEED GRACILARIA TIKVAHIAE 1 , 1985 .

[68]  C. L. Scroggins INCREASING PRODUCTIVITY. , 1964, The Journal of the Oklahoma State Medical Association.

[69]  J. Ryther,et al.  Chemical Quality and Production of Agars Extracted from Gracilaria tikvahiae Grown in Different Nitrogen Enrichment Conditions , 1981 .

[70]  A. Larkum A study of growth and primary production in Eckloniaradiat (C.Ag.) J. Agardh (Laminariales) at a sheltered site in Port Jackson, New South Wales , 1986 .

[71]  R. Fujita The role of nitrogen status in regulating transient ammonium uptake and nitrogen storage by macroalgae , 1985 .

[72]  C. Osmond,et al.  Photoacclimation and photoinhibition in Ulva rotundata as influenced by nitrogen availability , 1991, Planta.

[73]  K. Heck,et al.  Primary productivity of angiosperm and macroalgae dominated habitats in a New England Salt Marsh: a Comparative analysis , 1990 .

[74]  K. Bird Cost analyses of energy from marine biomass , 1987 .

[75]  B. Sweeney,et al.  Physiological studies of Gelidium cartilagineum; photosynthesis, with special reference to the carbon dioxide factor. , 1946, American journal of botany.

[76]  C. D’Elia,et al.  NUTRITIONAL STUDIES OF TWO RED ALGAE. I. GROWT RATE AS A FUNCTION OF NITROGEN SOURCE AND CONCENTRATION 1 , 1978 .

[77]  J. Raven HOW BENTHIC MACROALGAE COPE WITH FLOWING FRESHWATER: RESOURCE ACQUISITION AND RETENTION , 1992 .

[78]  Utilization of Inorganic Carbon by Ulva lactuca. , 1991, Plant physiology.

[79]  V. Smetacek,et al.  Carbon dioxide limitation of marine phytoplankton growth rates , 1993, Nature.

[80]  B. Santelices,et al.  Experimental tank cultivation of Gracilaria chilensis in central Chile , 1992 .

[81]  Y. Yokohama A Comparative Study on Photosynthesis Temperature Relationships and Their Seasonal Changes in Marine Benthic Algae , 1973 .

[82]  M. Hanisak Nitrogen limitation of Codium fragile ssp. tomentosoides as determined by tissue analysis , 1979 .

[83]  S. Maberly,et al.  Distribution of carbonic anhydrase in British marine macroalgae , 1989, Oecologia.

[84]  K. Asada,et al.  Calcification in the articulated coralline alga Corallina pilulifera, with special reference to the effect of elevated CO2 concentration , 1993 .

[85]  W. N. Wheeler,et al.  Seasonal growth and productivity ofMacrocystis integrifolia in British Columbia, Canada , 1986 .

[86]  V. Ladygin Pigment Composition and Photosynthetic Activity of Pea Chlorophyll Mutants , 2003, Biology Bulletin of the Russian Academy of Sciences.

[87]  S. Beer,et al.  Photosynthetic carbon acquisition in the red alga Gracilaria conferta , 1992 .

[88]  Toshiaki Ishihara,et al.  Enhanced growth of the red algaPorphyra yezoensis Ueda in high CO2 concentrations , 1991, Journal of Applied Phycology.

[89]  J. Mclachlan,et al.  Carbon nutrition of seaweeds: Photosynthesis, photorespiration and respiration , 1985 .

[90]  S. V. Smith,et al.  C:N:P ratios of benthic marine plants1 , 1983 .

[91]  B. Lapointe Phosphorus-limited photosynthesis and growth of Sargassum natans and Sargassum fluitans (Phaeophyceae) in the western North Atlantic , 1986 .

[92]  D. Graham,et al.  Carbonate Dehydratase in Marine Organisms of the Great Barrier Reef , 1976 .

[93]  C. Osmond,et al.  INORGANIC CARBON LIMITATION OF PHOTOSYNTHESIS IN ULVA ROTUNDATA (CHLOROPHYTA) 1 , 1991 .

[94]  D. Brown,et al.  INHIBITION OF RESPIRATION DURING PHOTOSYNTHESIS BY SOME ALGAE , 1967 .

[95]  J. Ramus,et al.  Uptake of inorganic nitrogen and seaweed surface area: Volume ratios , 1984 .

[96]  M. Chihara,et al.  Productivity of theEcklonia cava community in a bay of Izu Peninsula on the Pacific Coast of Japan , 1987, The botanical magazine = Shokubutsu-gaku-zasshi.

[97]  J. R. Waaland,et al.  Photoinhibition of photosynthesis in a sun and a shade species of the red algal genus Porphyra , 1988 .