Nonnodal Condensation of Eigenvalue Problems

We generalize the Guyan condensation of large symmetric eigenvalue problems to allow general degrees of freedom to be maste r variables. On one hand useful information from other condensation methods (such as Component Mode Synthesis) thus can be incorporated into the method. On the other hand this opens the way to iterative refinement of eigen-vector approximations. Convergence of such a procedure follows from the result, that one step of (static) condensation is equivalent to one step of inverse subspace iteration. A short outlook on several applications is included.

[1]  Yee-Tak Leung,et al.  An accurate method of dynamic substructuring with simplified computation , 1979 .

[2]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[3]  B. Irons Structural eigenvalue problems - elimination of unwanted variables , 1965 .

[4]  Kai Rothey Improving Condensation Methods for Eigenvalue Problems via Rayleigh Functional , 1994 .

[5]  Noureddine Bouhaddi,et al.  A method for selecting master DOF in dynamic substructuring using the Guyan condensation method , 1992 .

[6]  M. Géradin,et al.  Mechanical Vibrations: Theory and Application to Structural Dynamics , 1994 .

[7]  K. W. Matta,et al.  Selection of degrees of freedom for dynamic analysis , 1984 .

[8]  Heinrich VossyAbstractSince A Condensation-Projection Method for the Generalized Eigenvalue Problem , 1995 .

[9]  Etienne Balmès,et al.  Use of Generalized Interface Degrees of Freedom in Component Mode Synthesis , 1999 .

[10]  Bo Ping Wang,et al.  Eigenvalue Reanalysis of Locally Modified Structures Using a Generalized Rayleigh's Method , 1984 .

[11]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[12]  W. Gander,et al.  Restricted rank modification of the symmetric eigenvalue problem: Theoretical considerations , 1988 .

[13]  A. Weinstein,et al.  Methods of intermediate problems for eigenvalues: theory and ramifications , 1972 .

[14]  H. Voss An Error Bound for Eigenvalue Analysis by Nodal Condensation , 1983 .

[15]  H. Schwetlick,et al.  A modified block Newton iteration for approximating an invariant subspace of a symmetric matrix , 1998 .

[16]  Heinrich Voss Interior and modal masters in condensation methods for eigenvalue problems , 1997 .

[17]  V. N. Shah,et al.  Analytical selection of masters for the reduced eigenvalue problem , 1982 .

[18]  Heinrich Voss,et al.  A Fully Parallel Condensation Method for Generalized Eigenvalue Problems on Distributed Memory Computers , 1995, Parallel Comput..

[19]  Etienne Balmes,et al.  Optimal Ritz vectors for component mode synthesis using the singular value decomposition , 1996 .

[20]  Ahmed K. Noor,et al.  Recent Advances and Applications of Reduction Methods , 1994 .

[21]  Heinrich Voss,et al.  Improving condensation methods for eigenvalue problems via Rayleigh functionals , 1994 .

[22]  W. Hurty Dynamic Analysis of Structural Systems Using Component Modes , 1965 .

[23]  R. Guyan Reduction of stiffness and mass matrices , 1965 .

[24]  C. E. Knight,et al.  Two-step component-mode synthesis for the eigensolution of large systems , 1996 .

[25]  Ephrahim Garcia,et al.  Improvement in model reduction schemes using the system equivalent reduction expansion process , 1996 .

[26]  E. Balmes,et al.  De l'utilisation de la norme en énergie pour la création de modèles réduits en dynamique des structures , 1996 .

[27]  A. Leung An accurate method of dynamic condensation in structural analysis , 1978 .