Spiroketal polyketide formation in Sorangium: identification and analysis of the biosynthetic gene cluster for the highly cytotoxic spirangienes.

[1]  P. Leadlay,et al.  Evidence for the role of the monB genes in polyether ring formation during monensin biosynthesis. , 2006, Chemistry & biology.

[2]  Robert M Stroud,et al.  The structure of a ketoreductase determines the organization of the beta-carbon processing enzymes of modular polyketide synthases. , 2006, Structure.

[3]  P. Leadlay,et al.  Directed mutagenesis alters the stereochemistry of catalysis by isolated ketoreductase domains from the erythromycin polyketide synthase. , 2006, Chemistry & biology.

[4]  R. Müller,et al.  Identification and analysis of the chivosazol biosynthetic gene cluster from the myxobacterial model strain Sorangium cellulosum So ce56. , 2006, Journal of biotechnology.

[5]  H. Reichenbach,et al.  Spirangien A and B, Highly Cytotoxic and Antifungal Spiroketals from the Myxobacterium Sorangium cellulosum: Isolation, Structure Elucidation and Chemical Modifications , 2005 .

[6]  Kira J. Weissman,et al.  Combinatorial biosynthesis of reduced polyketides , 2005, Nature Reviews Microbiology.

[7]  Rolf Müller,et al.  The impact of bacterial genomics on natural product research. , 2005, Angewandte Chemie.

[8]  Rolf Müller,et al.  Formation of novel secondary metabolites by bacterial multimodular assembly lines: deviations from textbook biosynthetic logic. , 2005, Current opinion in chemical biology.

[9]  Rolf Müller,et al.  Evolutionary implications of bacterial polyketide synthases. , 2005, Molecular biology and evolution.

[10]  Epothilone, a Myxobacterial Metabolite with Promising Antitumor Activity , 2005 .

[11]  D. Kingston,et al.  Anticancer Agents from Natural Products , 2005 .

[12]  C. Khosla,et al.  A New Route to Designer Antibiotics , 2005, Science.

[13]  Christopher T. Walsh,et al.  Lessons from natural molecules , 2004, Nature.

[14]  Michelle C. Moffitt,et al.  Characterization of the Nodularin Synthetase Gene Cluster and Proposed Theory of the Evolution of Cyanobacterial Hepatotoxins , 2004, Applied and Environmental Microbiology.

[15]  Christine J. Martin,et al.  Loss of co-linearity by modular polyketide synthases: a mechanism for the evolution of chemical diversity. , 2004, Natural product reports.

[16]  Q. Gong,et al.  Thioesterase II of Escherichia coli Plays an Important Role in 3-Hydroxydecanoic Acid Production , 2004, Applied and Environmental Microbiology.

[17]  M. Marahiel,et al.  Mutational analysis of a type II thioesterase associated with nonribosomal peptide synthesis. , 2004, European journal of biochemistry.

[18]  Sarojini Adusumilli,et al.  Giant plasmid-encoded polyketide synthases produce the macrolide toxin of Mycobacterium ulcerans. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  L. Chung,et al.  Elucidating the mechanism of cis double bond formation in epothilone biosynthesis. , 2004, Journal of the American Chemical Society.

[20]  R. Müller,et al.  Critical variations of conjugational DNA transfer into secondary metabolite multiproducing Sorangium cellulosum strains So ce12 and So ce56: development of a mariner-based transposon mutagenesis system. , 2004, Journal of biotechnology.

[21]  R. Müller,et al.  Myxobacteria: proficient producers of novel natural products with various biological activities--past and future biotechnological aspects with the focus on the genus Sorangium. , 2003, Journal of biotechnology.

[22]  Blaine A Pfeifer,et al.  A specific role of the Saccharopolyspora erythraea thioesterase II gene in the function of modular polyketide synthases. , 2003, Microbiology.

[23]  Patrick Caffrey,et al.  Conserved Amino Acid Residues Correlating With Ketoreductase Stereospecificity in Modular Polyketide Synthases , 2003, Chembiochem : a European journal of chemical biology.

[24]  David J Newman,et al.  Natural products as sources of new drugs over the period 1981-2002. , 2003, Journal of natural products.

[25]  Gitanjali Yadav,et al.  Computational approach for prediction of domain organization and substrate specificity of modular polyketide synthases. , 2003, Journal of molecular biology.

[26]  C Richard Hutchinson,et al.  A model of structure and catalysis for ketoreductase domains in modular polyketide synthases. , 2003, Biochemistry.

[27]  J. V. Lopez Naturally mosaic operons for secondary metabolite biosynthesis: variability and putative horizontal transfer of discrete catalytic domains of the epothilone polyketide synthase locus , 2003, Molecular Genetics and Genomics.

[28]  M. Marahiel,et al.  Regeneration of misprimed nonribosomal peptide synthetases by type II thioesterases , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[29]  H. Reichenbach,et al.  Characterisation, genome size and genetic manipulation of the myxobacterium Sorangium cellulosum So ce56 , 2002, Archives of Microbiology.

[30]  Modification of post-PKS tailoring steps through combinatorial biosynthesis. , 2002, Natural product reports.

[31]  H. Blöcker,et al.  The Biosynthesis of the Aromatic Myxobacterial Electron Transport Inhibitor Stigmatellin Is Directed by a Novel Type of Modular Polyketide Synthase* , 2002, The Journal of Biological Chemistry.

[32]  P. Bruheim,et al.  Hexaene derivatives of nystatin produced as a result of an induced rearrangement within the nysC polyketide synthase gene in S. noursei ATCC 11455. , 2002, Chemistry & biology.

[33]  S. Hill,et al.  Characterization of the biosynthetic gene cluster for the antifungal polyketide soraphen A from Sorangium cellulosum So ce26. , 2002, Gene.

[34]  H. Reichenbach,et al.  Studies on the biosynthesis of epothilones: the PKS and Epothilone C/D monooxygenase. , 2001, The Journal of antibiotics.

[35]  P. Leadlay,et al.  Role of type II thioesterases: evidence for removal of short acyl chains produced by aberrant decarboxylation of chain extender units. , 2001, Chemistry & biology.

[36]  K. Reynolds,et al.  The Streptomyces venezuelae pikAV gene contains a transcription unit essential for expression of enzymes involved in glycosylation of narbonolide and 10-deoxymethynolide. , 2001, Gene.

[37]  J. Staunton,et al.  Polyketide biosynthesis: a millennium review. , 2001, Natural product reports.

[38]  T. Ellingsen,et al.  Biosynthesis of the polyene antifungal antibiotic nystatin in Streptomyces noursei ATCC 11455: analysis of the gene cluster and deduction of the biosynthetic pathway. , 2000, Chemistry & biology.

[39]  C. Khosla,et al.  Isolation and characterization of the epothilone biosynthetic gene cluster from Sorangium cellulosum. , 2000, Gene.

[40]  J M Ligon,et al.  The biosynthetic gene cluster for the microtubule-stabilizing agents epothilones A and B from Sorangium cellulosum So ce90. , 2000, Chemistry & biology.

[41]  H. Blöcker,et al.  New Lessons for Combinatorial Biosynthesis from Myxobacteria , 1999, The Journal of Biological Chemistry.

[42]  R. Müller,et al.  Metabolic diversity in myxobacteria: identification of the myxalamid and the stigmatellin biosynthetic gene cluster of Stigmatella aurantiaca Sg a15 and a combined polyketide-(poly)peptide gene cluster from the epothilone producing strain Sorangium cellulosum So ce90. , 1999, Biochimica et biophysica acta.

[43]  N. Bate,et al.  Impact of thioesterase activity on tylosin biosynthesis in Streptomyces fradiae. , 1999, Chemistry & biology.

[44]  M. Marahiel,et al.  How do peptide synthetases generate structural diversity? , 1999, Chemistry & biology.

[45]  C. Hutchinson,et al.  Characterization of the enzymatic domains in the modular polyketide synthase involved in rifamycin B biosynthesis by Amycolatopsis mediterranei. , 1998, Gene.

[46]  P. Branny,et al.  Antibiotic resistance gene cassettes derived from the omega interposon for use in E. coli and Streptomyces. , 1997, Gene.

[47]  P. Leadlay,et al.  Organization of the biosynthetic gene cluster for rapamycin in Streptomyces hygroscopicus: analysis of the enzymatic domains in the modular polyketide synthase. , 1996, Gene.

[48]  R. Kagan,et al.  Widespread occurrence of three sequence motifs in diverse S-adenosylmethionine-dependent methyltransferases suggests a common structure for these enzymes. , 1994, Archives of biochemistry and biophysics.

[49]  S. Jaoua,et al.  Transfer of mobilizable plasmids to Sorangium cellulosum and evidence for their integration into the chromosome. , 1992, Plasmid.

[50]  S. Donadio,et al.  Organization of the enzymatic domains in the multifunctional polyketide synthase involved in erythromycin formation in Saccharopolyspora erythraea. , 1992, Gene.

[51]  A. Pühler,et al.  Plasmid vectors for the genetic analysis and manipulation of rhizobia and other gram-negative bacteria. , 1986, Methods in enzymology.

[52]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[53]  E. Breitmaier,et al.  [Carbon 13 NMR spectroscopy]. , 1976, Pharmazie in unserer Zeit.