Reconstruction of Media Posed as an Optimization Problem

A central problem in target identification, non-destructive testing. medical imaging and numerous other areas of application concerns the determination of the shape. location and constitutive parameters, such as complex index of refraction or local sound speed, of a local inhomogeneity from measurements of the scattered field when a monochromatic wave is incident upon the inhomogeneity. One class of methods of attacking this problem is based on minimizing the discrepancy between the measured data and predicted data as a function of the desired parameters. Although the problem is nonlinear and ill-posed, considerable progress has been made in developing useful algorithms for reconstructing the desired parameters.

[1]  Steven Gerard Ross,et al.  Imaging and inverse problems of electromagnetic nondestructive evaluation , 1995 .

[2]  Ann Franchois,et al.  Contribution a la tomographie microonde : algorithmes de reconstruction quantitative et verifications experimentales , 1993 .

[3]  C. Vogel,et al.  Analysis of bounded variation penalty methods for ill-posed problems , 1994 .

[4]  Robert V. Kohn,et al.  Numerical implementation of a variational method for electrical impedance tomography , 1990 .

[5]  Willis J. Tompkins,et al.  Comparing Reconstruction Algorithms for Electrical Impedance Tomography , 1987, IEEE Transactions on Biomedical Engineering.

[6]  Anton G. Tijhuis,et al.  Born-type reconstruction of material parameters of an inhomogeneous, lossy dielectric slab from reflected-field data , 1989 .

[7]  Peter M. van den Berg,et al.  Profile inversion via successive overrelaxation , 1990, Optics & Photonics.

[8]  Weng Cho Chew,et al.  Inverse scattering of Hz waves using local shape‐function imaging: A T‐matrix formulation , 1994, Int. J. Imaging Syst. Technol..

[9]  Aria Abubakar,et al.  Three‐dimensional nonlinear inversion in cross‐well electrode logging , 1998 .

[10]  Peter M. van den Berg,et al.  Convergent Born series for large refractive indices , 1990 .

[11]  Norbert N. Bojarski,et al.  Inverse scattering inverse source theory , 1981 .

[12]  P. M. Berg,et al.  A contrast source inversion method , 1997 .

[13]  Vikass Monebhurrun,et al.  Multifrequency version of the modified gradient algorithm for reconstruction of complex refractive indices , 1997, Optics & Photonics.

[14]  Matteo Pastorino,et al.  A multiview microwave imaging system for two-dimensional penetrable objects , 1991 .

[15]  S. Barkeshli,et al.  An iterative method for inverse scattering problems based on an exact gradient search , 1994 .

[16]  Dominique Lesselier,et al.  On the inverse source method of solving inverse scattering problems , 1994 .

[17]  A. Devaney Nonuniqueness in the inverse scattering problem , 1978 .

[18]  M. G. Cote Automated swept-angle bistatic scattering measurements using continuous wave radar , 1991, [1991] Conference Record. IEEE Instrumentation and Measurement Technology Conference.

[19]  P. M. Berg,et al.  A modified gradient method for two-dimensional problems in tomography , 1992 .

[20]  R. Kress,et al.  Inverse Acoustic and Electromagnetic Scattering Theory , 1992 .

[21]  R. Kleinman,et al.  Image Reconstruction From Ipswich Data , 1996, IEEE Antennas and Propagation Magazine.

[22]  P.M. van den Berg,et al.  Contrast source inversion method using multi-frequency data , 1998, IEEE Antennas and Propagation Society International Symposium. 1998 Digest. Antennas: Gateways to the Global Network. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.98CH36.

[23]  P. M. van den Berg,et al.  Iterative Methods for Solving Integral Equations , 1991, Progress In Electromagnetics Research.

[24]  Jack K. Cohen,et al.  Nonuniqueness in the inverse source problem in acoustics and electromagnetics , 1975 .

[25]  T. Habashy,et al.  Simultaneous nonlinear reconstruction of two‐dimensional permittivity and conductivity , 1994 .

[26]  P. M. van den Berg,et al.  "Blind" shape reconstruction from experimental data , 1995 .

[27]  J. Richmond Scattering by a dielectric cylinder of arbitrary cross section shape , 1965 .

[28]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[29]  P. M. van den Berg,et al.  An extended range‐modified gradient technique for profile inversion , 1993 .

[30]  P.M. van den Berg,et al.  Modified gradient profile inversion using multi-frequency data , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[31]  T. Charlton Progress in Solid Mechanics , 1962, Nature.

[32]  P. M. Berg Iterative computational techniques in scattering based upon the integrated square error criterion , 1984 .

[33]  P. M. Berg,et al.  Nonlinear inversion in TE scattering , 1998 .

[34]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[35]  P. M. Berg,et al.  A total variation enhanced modified gradient algorithm for profile reconstruction , 1995 .

[36]  M. Pastorino,et al.  Numerical solution to three-dimensional inverse scattering for dielectric reconstruction purposes , 1992 .

[37]  P. M. van den Berg,et al.  Nonlinear inversion in induction logging using the modified gradient method , 1995 .

[38]  W. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[39]  Fadil Santosa,et al.  Recovery of Blocky Images from Noisy and Blurred Data , 1996, SIAM J. Appl. Math..

[40]  T. Habashy,et al.  Beyond the Born and Rytov approximations: A nonlinear approach to electromagnetic scattering , 1993 .

[41]  W. Chew,et al.  Reconstruction of two-dimensional permittivity distribution using the distorted Born iterative method. , 1990, IEEE transactions on medical imaging.

[42]  D. Dobson,et al.  An image-enhancement technique for electrical impedance tomography , 1994 .

[43]  P. M. van den Berg,et al.  Two‐dimensional location and shape reconstruction , 1994 .

[44]  D. G. Dudley,et al.  Profile inversion using the renormalized source-type integral equation approach , 1990 .

[45]  A. Devaney,et al.  Nonuniqueness in inverse source and scattering problems , 1982 .

[46]  Fadil Santosa,et al.  Reconstruction of blocky impedence profiles from normal-incidence reflection seismograms which are band-limited and miscalibrated , 1988 .

[47]  C. Pichot,et al.  Diffraction tomography: contribution to the analysis of some applications in microwaves and ultrasonics , 1988 .

[48]  Michael Vogelius,et al.  A backprojection algorithm for electrical impedance imaging , 1990 .

[49]  A. Devaney,et al.  Comments on "Nonuniqueness in inverse source and scattering problems" , 1982 .

[50]  A. Roger,et al.  Newton-Kantorovitch algorithm applied to an electromagnetic inverse problem , 1981 .